-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
766 lines (610 loc) · 28.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
import tensorflow as tf
import numpy as np
import timeit
from tensorflow.python.platform import flags
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm
import time
from multiprocessing import Process
from data import Cifar10, CelebAHQ, Mnist, ImageNet, LSUNBed, STLDataset
from models import ResNetModel, CelebAModel, MNISTModel, ImagenetModel
import os.path as osp
import os
from logger import TensorBoardOutputFormat
from utils import ReplayBuffer, ReservoirBuffer
from tqdm import tqdm
import random
from torch.utils.data import DataLoader
import time as time
from io import StringIO
from tensorflow.core.util import event_pb2
import torch
import numpy as np
from scipy.misc import imsave
import matplotlib.pyplot as plt
from easydict import EasyDict
from utils import ReplayBuffer
from torch.optim import Adam, SGD
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
FLAGS = flags.FLAGS
# Distributed training hyperparameters
flags.DEFINE_integer('nodes', 1,
'number of nodes for training')
flags.DEFINE_integer('gpus', 1,
'number of gpus per nodes')
flags.DEFINE_integer('node_rank', 0,
'rank of node')
# Configurations for distributed training
flags.DEFINE_string('master_addr', '8.8.8.8',
'address of communicating server')
flags.DEFINE_string('port', '10002',
'port of training')
flags.DEFINE_bool('slurm', False,
'whether we are on slurm')
flags.DEFINE_bool('repel_im', True,
'maximize entropy by repeling images from each other')
flags.DEFINE_bool('hmc', False,
'use the hamiltonian monte carlo sampler')
flags.DEFINE_bool('square_energy', False,
'make the energy square')
flags.DEFINE_bool('alias', False,
'make the energy square')
flags.DEFINE_string('dataset','cifar10',
'cifar10 or celeba')
flags.DEFINE_integer('batch_size', 128, 'batch size during training')
flags.DEFINE_bool('multiscale', True, 'A multiscale EBM')
flags.DEFINE_bool('self_attn', True, 'Use self attention in models')
flags.DEFINE_bool('sigmoid', False, 'Apply sigmoid on energy (can improve the stability)')
flags.DEFINE_bool('anneal', False, 'Decrease noise over Langevin steps')
flags.DEFINE_integer('data_workers', 4,
'Number of different data workers to load data in parallel')
flags.DEFINE_integer('buffer_size', 10000, 'Size of inputs')
# General Experiment Settings
flags.DEFINE_string('logdir', 'cachedir',
'location where log of experiments will be stored')
flags.DEFINE_string('exp', 'default', 'name of experiments')
flags.DEFINE_integer('log_interval', 10, 'log outputs every so many batches')
flags.DEFINE_integer('save_interval', 1000,'save outputs every so many batches')
flags.DEFINE_integer('test_interval', 1000,'evaluate outputs every so many batches')
flags.DEFINE_integer('resume_iter', 0, 'iteration to resume training from')
flags.DEFINE_bool('train', True, 'whether to train or test')
flags.DEFINE_bool('transform', True, 'apply data augmentation when sampling from the replay buffer')
flags.DEFINE_bool('kl', True, 'apply a KL term to loss')
flags.DEFINE_bool('cuda', True, 'move device on cuda')
flags.DEFINE_integer('epoch_num', 10000, 'Number of Epochs to train on')
flags.DEFINE_integer('ensembles', 1, 'Number of ensembles to train models with')
flags.DEFINE_float('lr', 2e-4, 'Learning for training')
flags.DEFINE_float('kl_coeff', 1.0, 'coefficient for kl')
# EBM Specific Experiments Settings
flags.DEFINE_string('objective', 'cd', 'use the cd objective')
# Setting for MCMC sampling
flags.DEFINE_integer('num_steps', 40, 'Steps of gradient descent for training')
flags.DEFINE_float('step_lr', 100.0, 'Size of steps for gradient descent')
flags.DEFINE_bool('replay_batch', True, 'Use MCMC chains initialized from a replay buffer.')
flags.DEFINE_bool('reservoir', True, 'Use a reservoir of past entires')
flags.DEFINE_float('noise_scale', 1.,'Relative amount of noise for MCMC')
# Architecture Settings
flags.DEFINE_integer('filter_dim', 64, 'number of filters for conv nets')
flags.DEFINE_integer('im_size', 32, 'size of images')
flags.DEFINE_bool('spec_norm', False, 'Whether to use spectral normalization on weights')
flags.DEFINE_bool('norm', True, 'Use group norm in models norm in models')
# Conditional settings
flags.DEFINE_bool('cond', False, 'conditional generation with the model')
flags.DEFINE_bool('all_step', False, 'backprop through all langevin steps')
flags.DEFINE_bool('log_grad', False, 'log the gradient norm of the kl term')
flags.DEFINE_integer('cond_idx', 0, 'conditioned index')
def compress_x_mod(x_mod):
x_mod = (255 * np.clip(x_mod, 0, 1)).astype(np.uint8)
return x_mod
def decompress_x_mod(x_mod):
x_mod = x_mod / 256 + \
np.random.uniform(0, 1 / 256, x_mod.shape)
return x_mod
def make_image(tensor):
"""Convert an numpy representation image to Image protobuf"""
from PIL import Image
if len(tensor.shape) == 4:
_, height, width, channel = tensor.shape
elif len(tensor.shape) == 3:
height, width, channel = tensor.shape
elif len(tensor.shape) == 2:
height, width = tensor.shape
channel = 1
tensor = tensor.astype(np.uint8).squeeze()
image = Image.fromarray(tensor)
import io
output = io.BytesIO()
image.save(output, format='png')
image_string = output.getvalue()
output.close()
return tf.Summary.Image(height=height,
width=width,
colorspace=channel,
encoded_image_string=image_string)
def sync_model(models):
size = float(dist.get_world_size())
for model in models:
for param in model.parameters():
dist.broadcast(param.data, 0)
def ema_model(models, models_ema, mu=0.99):
for model, model_ema in zip(models, models_ema):
for param, param_ema in zip(model.parameters(), model_ema.parameters()):
param_ema.data[:] = mu * param_ema.data + (1 - mu) * param.data
def average_gradients(models):
size = float(dist.get_world_size())
for model in models:
for param in model.parameters():
if param.grad is None:
continue
dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM)
param.grad.data /= size
def log_image(im, logger, tag, step=0):
im = make_image(im)
summary = [tf.Summary.Value(tag=tag, image=im)]
summary = tf.Summary(value=summary)
event = event_pb2.Event(summary=summary)
event.step = step
logger.writer.WriteEvent(event)
logger.writer.Flush()
def rescale_im(image):
image = np.clip(image, 0, 1)
return (np.clip(image * 256, 0, 255)).astype(np.uint8)
def hamiltonian(x, v, model, label):
energy = 0.5 * torch.pow(v, 2).sum(dim=1).sum(dim=1).sum(dim=1) + model.forward(x, label).squeeze()
return energy
def leapfrog_step(x, v, model, step_size, num_steps, label, sample=False):
x.requires_grad_(requires_grad=True)
energy = model.forward(x, label)
im_grad = torch.autograd.grad([energy.sum()], [x])[0]
v = v - 0.5 * step_size * im_grad
im_negs = []
for i in range(num_steps):
x.requires_grad_(requires_grad=True)
energy = model.forward(x, label)
if i == num_steps - 1:
im_grad = torch.autograd.grad([energy.sum()], [x], create_graph=True)[0]
v = v - step_size * im_grad
x = x + step_size * v
v = v.detach()
else:
im_grad = torch.autograd.grad([energy.sum()], [x])[0]
v = v - step_size * im_grad
x = x + step_size * v
x = x.detach()
v = v.detach()
if sample:
im_negs.append(x)
if i % 10 == 0:
print(i, hamiltonian(torch.sigmoid(x), v, model, label).mean(), torch.abs(im_grad).mean())
if sample:
return x, im_negs, v, im_grad
else:
return x, v, im_grad
def gen_hmc_image(label, FLAGS, model, im_neg, num_steps, sample=False):
step_size = FLAGS.step_lr
v = 0.001 * torch.randn_like(im_neg)
if sample:
im_neg, im_negs, v, im_grad = leapfrog_step(im_neg, v, model, step_size, num_steps, label, sample=sample)
return im_neg, im_negs, im_grad, v
else:
im_neg, v, im_grad = leapfrog_step(im_neg, v, model, step_size, num_steps, label, sample=sample)
return im_neg, im_grad, v
def gen_image(label, FLAGS, model, im_neg, num_steps, sample=False):
im_noise = torch.randn_like(im_neg).detach()
im_negs_samples = []
for i in range(num_steps):
im_noise.normal_()
if FLAGS.anneal:
im_neg = im_neg + 0.001 * (num_steps - i - 1) / num_steps * im_noise
else:
im_neg = im_neg + 0.001 * im_noise
im_neg.requires_grad_(requires_grad=True)
energy = model.forward(im_neg, label)
if FLAGS.all_step:
im_grad = torch.autograd.grad([energy.sum()], [im_neg], create_graph=True)[0]
else:
im_grad = torch.autograd.grad([energy.sum()], [im_neg])[0]
if i == num_steps - 1:
im_neg_orig = im_neg
im_neg = im_neg - FLAGS.step_lr * im_grad
if FLAGS.dataset == "cifar10":
n = 128
elif FLAGS.dataset == "celeba":
# Save space
n = 128
elif FLAGS.dataset == "lsun":
# Save space
n = 32
elif FLAGS.dataset == "object":
# Save space
n = 32
elif FLAGS.dataset == "mnist":
n = 32
elif FLAGS.dataset == "imagenet":
n = 32
elif FLAGS.dataset == "stl":
n = 32
im_neg_kl = im_neg_orig[:n]
if sample:
pass
else:
energy = model.forward(im_neg_kl, label)
im_grad = torch.autograd.grad([energy.sum()], [im_neg_kl], create_graph=True)[0]
im_neg_kl = im_neg_kl - FLAGS.step_lr * im_grad[:n]
im_neg_kl = torch.clamp(im_neg_kl, 0, 1)
else:
im_neg = im_neg - FLAGS.step_lr * im_grad
im_neg = im_neg.detach()
if sample:
im_negs_samples.append(im_neg)
im_neg = torch.clamp(im_neg, 0, 1)
if sample:
return im_neg, im_neg_kl, im_negs_samples, im_grad
else:
return im_neg, im_neg_kl, im_grad
def test(model, logger, dataloader):
pass
def train(models, models_ema, optimizer, logger, dataloader, resume_iter, logdir, FLAGS, rank_idx, best_inception):
torch.cuda.set_device(rank_idx)
if FLAGS.replay_batch:
if FLAGS.reservoir:
replay_buffer = ReservoirBuffer(FLAGS.buffer_size, FLAGS.transform, FLAGS.dataset)
else:
replay_buffer = ReplayBuffer(FLAGS.buffer_size, FLAGS.transform, FLAGS.dataset)
if rank_idx == 0:
from inception import get_inception_score
itr = resume_iter
im_neg = None
gd_steps = 1
optimizer.zero_grad()
num_steps = FLAGS.num_steps
if FLAGS.cuda:
dev = torch.device("cuda:{}".format(rank_idx))
else:
dev = torch.device("cpu")
for epoch in range(FLAGS.epoch_num):
tock = time.time()
for data_corrupt, data, label in dataloader:
label = label.float().cuda(rank_idx)
data = data.permute(0, 3, 1, 2).float().contiguous()
# Generate samples to evaluate inception score
if itr % FLAGS.save_interval == 0:
if FLAGS.dataset == "cifar10":
data_corrupt = torch.Tensor(np.random.uniform(0.0, 1.0, (128, 32, 32, 3)))
repeat = 128 // FLAGS.batch_size + 1
label = torch.cat([label] * repeat, axis=0)
label = label[:128]
elif FLAGS.dataset == "celeba":
data_corrupt = torch.Tensor(np.random.uniform(0.0, 1.0, (data.shape[0], 128, 128, 3)))
label = label[:data.shape[0]]
data_corrupt = data_corrupt[:label.shape[0]]
elif FLAGS.dataset == "stl":
data_corrupt = torch.Tensor(np.random.uniform(0.0, 1.0, (32, 48, 48, 3)))
label = label[:32]
data_corrupt = data_corrupt[:label.shape[0]]
elif FLAGS.dataset == "lsun":
data_corrupt = torch.Tensor(np.random.uniform(0.0, 1.0, (32, 128, 128, 3)))
label = label[:32]
data_corrupt = data_corrupt[:label.shape[0]]
elif FLAGS.dataset == "imagenet":
data_corrupt = torch.Tensor(np.random.uniform(0.0, 1.0, (32, 128, 128, 3)))
label = label[:32]
data_corrupt = data_corrupt[:label.shape[0]]
elif FLAGS.dataset == "object":
data_corrupt = torch.Tensor(np.random.uniform(0.0, 1.0, (32, 128, 128, 3)))
label = label[:32]
data_corrupt = data_corrupt[:label.shape[0]]
elif FLAGS.dataset == "mnist":
data_corrupt = torch.Tensor(np.random.uniform(0.0, 1.0, (32, 28, 28, 1)))
label = label[:32]
data_corrupt = data_corrupt[:label.shape[0]]
else:
assert False
data_corrupt = torch.Tensor(data_corrupt.float()).permute(0, 3, 1, 2).float().contiguous()
data = data.cuda(rank_idx)
data_corrupt = data_corrupt.cuda(rank_idx)
if FLAGS.replay_batch and len(replay_buffer) >= FLAGS.batch_size:
replay_batch, idxs = replay_buffer.sample(data_corrupt.size(0))
replay_batch = decompress_x_mod(replay_batch)
replay_mask = (
np.random.uniform(
0,
1,
data_corrupt.size(0)) > 0.001)
data_corrupt[replay_mask] = torch.Tensor(replay_batch[replay_mask]).cuda(rank_idx)
else:
idxs = None
ix = random.randint(0, len(models) - 1)
model = models[ix]
if FLAGS.hmc:
if itr % FLAGS.save_interval == 0:
im_neg, im_samples, x_grad, v = gen_hmc_image(label, FLAGS, model, data_corrupt, num_steps, sample=True)
else:
im_neg, x_grad, v = gen_hmc_image(label, FLAGS, model, data_corrupt, num_steps)
else:
if itr % FLAGS.save_interval == 0:
im_neg, im_neg_kl, im_samples, x_grad = gen_image(label, FLAGS, model, data_corrupt, num_steps, sample=True)
else:
im_neg, im_neg_kl, x_grad = gen_image(label, FLAGS, model, data_corrupt, num_steps)
energy_pos = model.forward(data, label[:data.size(0)])
energy_neg = model.forward(im_neg.clone(), label)
if FLAGS.replay_batch and (im_neg is not None):
replay_buffer.add(compress_x_mod(im_neg.detach().cpu().numpy()))
loss = energy_pos.mean() - energy_neg.mean() #
loss = loss + (torch.pow(energy_pos, 2).mean() + torch.pow(energy_neg, 2).mean())
if FLAGS.kl:
model.requires_grad_(False)
loss_kl = model.forward(im_neg_kl, label)
model.requires_grad_(True)
loss = loss + FLAGS.kl_coeff * loss_kl.mean()
if FLAGS.repel_im:
start = timeit.timeit()
bs = im_neg_kl.size(0)
if FLAGS.dataset in ["celeba", "imagenet", "object", "lsun", "stl"]:
im_neg_kl = im_neg_kl[:, :, :, :].contiguous()
im_flat = torch.clamp(im_neg_kl.view(bs, -1), 0, 1)
if FLAGS.dataset == "cifar10":
if len(replay_buffer) > 1000:
compare_batch, idxs = replay_buffer.sample(100, no_transform=False)
compare_batch = decompress_x_mod(compare_batch)
compare_batch = torch.Tensor(compare_batch).cuda(rank_idx)
compare_flat = compare_batch.view(100, -1)
dist_matrix = torch.norm(im_flat[:, None, :] - compare_flat[None, :, :], p=2, dim=-1)
loss_repel = torch.log(dist_matrix.min(dim=1)[0]).mean()
loss = loss - 0.3 * loss_repel
else:
loss_repel = torch.zeros(1)
else:
if len(replay_buffer) > 1000:
compare_batch, idxs = replay_buffer.sample(100, no_transform=False, downsample=True)
compare_batch = decompress_x_mod(compare_batch)
compare_batch = torch.Tensor(compare_batch).cuda(rank_idx)
compare_flat = compare_batch.view(100, -1)
dist_matrix = torch.norm(im_flat[:, None, :] - compare_flat[None, :, :], p=2, dim=-1)
loss_repel = torch.log(dist_matrix.min(dim=1)[0]).mean()
else:
loss_repel = torch.zeros(1).cuda(rank_idx)
loss = loss - 0.3 * loss_repel
end = timeit.timeit()
else:
loss_repel = torch.zeros(1)
else:
loss_kl = torch.zeros(1)
loss_repel = torch.zeros(1)
if FLAGS.hmc:
v_flat = v.view(v.size(0), -1)
im_grad_flat = x_grad.view(x_grad.size(0), -1)
dot_product = F.normalize(v_flat, dim=1) * F.normalize(im_grad_flat, dim=1)
hmc_loss = torch.abs(dot_product.sum(dim=1)).mean()
loss = loss + 0.01 * hmc_loss
else:
hmc_loss = torch.zeros(1)
if FLAGS.log_grad and len(replay_buffer) > 1000:
loss_kl = loss_kl - 0.1 * loss_repel
loss_kl = loss_kl.mean()
loss_ml = energy_pos.mean() - energy_neg.mean()
loss_ml.backward(retain_graph=True)
ele = []
for param in model.parameters():
if param.grad is not None:
ele.append(torch.norm(param.grad.data))
ele = torch.stack(ele, dim=0)
ml_grad = torch.mean(ele)
model.zero_grad()
loss_kl.backward(retain_graph=True)
ele = []
for param in model.parameters():
if param.grad is not None:
ele.append(torch.norm(param.grad.data))
ele = torch.stack(ele, dim=0)
kl_grad = torch.mean(ele)
model.zero_grad()
else:
ml_grad = None
kl_grad = None
loss.backward()
if FLAGS.gpus > 1:
average_gradients(models)
[clip_grad_norm(model.parameters(), 0.5) for model in models]
optimizer.step()
optimizer.zero_grad()
ema_model(models, models_ema)
if torch.isnan(energy_pos.mean()):
assert False
if torch.abs(energy_pos.mean()) > 10.0:
assert False
if itr % FLAGS.log_interval == 0 and rank_idx==0:
tick = time.time()
kvs = {}
kvs['e_pos'] = energy_pos.mean().item()
kvs['e_pos_std'] = energy_pos.std().item()
kvs['e_neg'] = energy_neg.mean().item()
kvs['kl_mean'] = loss_kl.mean().item()
kvs['loss_repel'] = loss_repel.mean().item()
kvs['e_neg_std'] = energy_neg.std().item()
kvs['e_diff'] = kvs['e_pos'] - kvs['e_neg']
kvs['x_grad'] = np.abs(x_grad.detach().cpu().numpy()).mean()
kvs['iter'] = itr
kvs['hmc_loss'] = hmc_loss.item()
kvs['num_steps'] = num_steps
kvs['t_diff'] = tick - tock
if FLAGS.replay_batch:
kvs['length'] = len(replay_buffer)
if (ml_grad is not None):
kvs['kl_grad'] = kl_grad
kvs['ml_grad'] = ml_grad
string = "Obtained a total of "
for key, value in kvs.items():
string += "{}: {}, ".format(key, value)
print(string)
logger.writekvs(kvs)
tock = tick
if itr % FLAGS.save_interval == 0 and rank_idx == 0 and (FLAGS.save_interval != 0):
model_path = osp.join(logdir, "model_{}.pth".format(itr))
ckpt = {'optimizer_state_dict': optimizer.state_dict(),
'FLAGS': FLAGS, 'best_inception': best_inception}
for i in range(FLAGS.ensembles):
ckpt['model_state_dict_{}'.format(i)] = models[i].state_dict()
ckpt['ema_model_state_dict_{}'.format(i)] = models_ema[i].state_dict()
torch.save(ckpt, model_path)
if itr % FLAGS.save_interval == 0 and rank_idx == 0:
im_samples = im_samples[::10]
im_samples_total = torch.stack(im_samples, dim=1).detach().cpu().permute(0, 1, 3, 4, 2).numpy()
try_im = im_neg
orig_im = data_corrupt
actual_im = rescale_im(data.detach().permute(0, 2, 3, 1).cpu().numpy())
orig_im = rescale_im(orig_im.detach().permute(0, 2, 3, 1).cpu().numpy())
try_im = rescale_im(try_im.detach().permute(0, 2, 3, 1).cpu().numpy()).squeeze()
im_samples_total = rescale_im(im_samples_total)
for i, (im, sample_im, actual_im_i) in enumerate(
zip(orig_im[:20], im_samples_total[:20], actual_im)):
shape = orig_im.shape[1:]
new_im = np.zeros((shape[0], shape[1] * (2 + sample_im.shape[0]), *shape[2:]))
size = shape[1]
new_im[:, :size] = im
for i, sample_i in enumerate(sample_im):
new_im[:, (i+1) * size:(i+2) * size] = sample_i
new_im[:, -size:] = actual_im_i
log_image(
new_im, logger, 'train_gen_{}'.format(itr), step=i)
if rank_idx == 0:
score, std = get_inception_score(list(try_im), splits=1)
print("Inception score of {} with std of {}".format(
score, std))
kvs = {}
kvs['inception_score'] = score
kvs['inception_score_std'] = std
logger.writekvs(kvs)
if score > best_inception:
model_path = osp.join(logdir, "model_best.pth")
torch.save(ckpt, model_path)
best_inception = score
itr += 1
def main_single(gpu, FLAGS):
if FLAGS.slurm:
init_distributed_mode(FLAGS)
os.environ['MASTER_ADDR'] = FLAGS.master_addr
os.environ['MASTER_PORT'] = FLAGS.port
rank_idx = FLAGS.node_rank * FLAGS.gpus + gpu
world_size = FLAGS.nodes * FLAGS.gpus
print("Values of args: ", FLAGS)
if world_size > 1:
if FLAGS.slurm:
dist.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank_idx)
else:
dist.init_process_group(backend='nccl', init_method='tcp://localhost:1700', world_size=world_size, rank=rank_idx)
if FLAGS.dataset == "cifar10":
train_dataset = Cifar10(FLAGS)
valid_dataset = Cifar10(FLAGS, train=False, augment=False)
test_dataset = Cifar10(FLAGS, train=False, augment=False)
elif FLAGS.dataset == "stl":
train_dataset = STLDataset(FLAGS)
valid_dataset = STLDataset(FLAGS, train=False)
test_dataset = STLDataset(FLAGS, train=False)
elif FLAGS.dataset == "object":
train_dataset = ObjectDataset(FLAGS.cond_idx)
valid_dataset = ObjectDataset(FLAGS.cond_idx)
test_dataset = ObjectDataset(FLAGS.cond_idx)
elif FLAGS.dataset == "imagenet":
train_dataset = ImageNet()
valid_dataset = ImageNet()
test_dataset = ImageNet()
elif FLAGS.dataset == "mnist":
train_dataset = Mnist(train=True)
valid_dataset = Mnist(train=False)
test_dataset = Mnist(train=False)
elif FLAGS.dataset == "celeba":
train_dataset = CelebAHQ(cond_idx=FLAGS.cond_idx)
valid_dataset = CelebAHQ(cond_idx=FLAGS.cond_idx)
test_dataset = CelebAHQ(cond_idx=FLAGS.cond_idx)
elif FLAGS.dataset == "lsun":
train_dataset = LSUNBed(cond_idx=FLAGS.cond_idx)
valid_dataset = LSUNBed(cond_idx=FLAGS.cond_idx)
test_dataset = LSUNBed(cond_idx=FLAGS.cond_idx)
else:
assert False
train_dataloader = DataLoader(train_dataset, num_workers=FLAGS.data_workers, batch_size=FLAGS.batch_size, shuffle=True, drop_last=True)
valid_dataloader = DataLoader(valid_dataset, num_workers=FLAGS.data_workers, batch_size=FLAGS.batch_size, shuffle=True, drop_last=True)
test_dataloader = DataLoader(test_dataset, num_workers=FLAGS.data_workers, batch_size=FLAGS.batch_size, shuffle=True, drop_last=True)
FLAGS_OLD = FLAGS
logdir = osp.join(FLAGS.logdir, FLAGS.exp)
best_inception = 0.0
if FLAGS.resume_iter != 0:
model_path = osp.join(logdir, "model_{}.pth".format(FLAGS.resume_iter))
checkpoint = torch.load(model_path)
best_inception = checkpoint['best_inception']
FLAGS = checkpoint['FLAGS']
FLAGS.resume_iter = FLAGS_OLD.resume_iter
FLAGS.nodes = FLAGS_OLD.nodes
FLAGS.gpus = FLAGS_OLD.gpus
FLAGS.node_rank = FLAGS_OLD.node_rank
FLAGS.master_addr = FLAGS_OLD.master_addr
FLAGS.train = FLAGS_OLD.train
FLAGS.num_steps = FLAGS_OLD.num_steps
FLAGS.step_lr = FLAGS_OLD.step_lr
FLAGS.batch_size = FLAGS_OLD.batch_size
FLAGS.ensembles = FLAGS_OLD.ensembles
FLAGS.kl_coeff = FLAGS_OLD.kl_coeff
FLAGS.repel_im = FLAGS_OLD.repel_im
FLAGS.save_interval = FLAGS_OLD.save_interval
for key in dir(FLAGS):
if "__" not in key:
FLAGS_OLD[key] = getattr(FLAGS, key)
FLAGS = FLAGS_OLD
if FLAGS.dataset == "cifar10":
model_fn = ResNetModel
elif FLAGS.dataset == "stl":
model_fn = ResNetModel
elif FLAGS.dataset == "object":
model_fn = CelebAModel
elif FLAGS.dataset == "mnist":
model_fn = MNISTModel
elif FLAGS.dataset == "celeba":
model_fn = CelebAModel
elif FLAGS.dataset == "lsun":
model_fn = CelebAModel
elif FLAGS.dataset == "imagenet":
model_fn = ImagenetModel
else:
assert False
models = [model_fn(FLAGS).train() for i in range(FLAGS.ensembles)]
models_ema = [model_fn(FLAGS).train() for i in range(FLAGS.ensembles)]
torch.cuda.set_device(gpu)
if FLAGS.cuda:
models = [model.cuda(gpu) for model in models]
model_ema = [model_ema.cuda(gpu) for model_ema in models_ema]
if FLAGS.gpus > 1:
sync_model(models)
parameters = []
for model in models:
parameters.extend(list(model.parameters()))
optimizer = Adam(parameters, lr=FLAGS.lr, betas=(0.0, 0.9), eps=1e-8)
ema_model(models, models_ema, mu=0.0)
logger = TensorBoardOutputFormat(logdir)
it = FLAGS.resume_iter
if not osp.exists(logdir):
os.makedirs(logdir)
checkpoint = None
if FLAGS.resume_iter != 0:
model_path = osp.join(logdir, "model_{}.pth".format(FLAGS.resume_iter))
checkpoint = torch.load(model_path)
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
for i, (model, model_ema) in enumerate(zip(models, models_ema)):
model.load_state_dict(checkpoint['model_state_dict_{}'.format(i)])
model_ema.load_state_dict(checkpoint['ema_model_state_dict_{}'.format(i)])
print("New Values of args: ", FLAGS)
pytorch_total_params = sum([p.numel() for p in model.parameters() if p.requires_grad])
print("Number of parameters for models", pytorch_total_params)
train(models, models_ema, optimizer, logger, train_dataloader, FLAGS.resume_iter, logdir, FLAGS, gpu, best_inception)
def main():
flags_dict = EasyDict()
for key in dir(FLAGS):
flags_dict[key] = getattr(FLAGS, key)
if FLAGS.gpus > 1:
mp.spawn(main_single, nprocs=FLAGS.gpus, args=(flags_dict,))
else:
main_single(0, flags_dict)
if __name__ == "__main__":
main()