-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
292 lines (238 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import torch
import yaml
import argparse
from lightning.pytorch import LightningModule, Trainer, seed_everything
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from lightning.pytorch.loggers import TensorBoardLogger
from sklearn.metrics import f1_score
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt
from model.multitasknet import MultiTaskNet
from libs.loss import JointsMSELoss, ClassificationLoss
from libs.metrics import pose_accuracy
from libs.vis import save_debug_images
from libs.load import HandDataModule
# Faster, but less precise
torch.set_float32_matmul_precision("high")
# sets seeds for numpy, torch and python.random.
seed_everything(42, workers=True)
class MultiTaskModule(LightningModule):
def __init__(self, data_cfg, image_size, batch_size,
lr, lr_step, lr_factor, save_path):
super().__init__()
num_joints = data_cfg['num_joints']
num_classes = data_cfg['num_classes']
self.names = data_cfg['names']
self.model = MultiTaskNet(num_joints, num_classes, image_size)
self.joints_loss = JointsMSELoss(use_target_weight=True)
self.class_loss = ClassificationLoss()
self.batch_size = batch_size
self.lr = lr
self.lr_step = lr_step
self.lr_factor = lr_factor
self.output_path = save_path
self.save_hyperparameters()
self.y_pred = []
self.y_true = []
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.model.parameters(), self.lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, self.lr_step, self.lr_factor)
return {'optimizer': optimizer, 'lr_scheduler': scheduler}
def forward(self, batch, batch_idx):
img, label, target, target_weight, _ = batch
pred_label, heatmap, attnmap = self.model(img)
class_loss = self.class_loss(pred_label, label) * 0.001
joints_loss = self.joints_loss(heatmap, target, target_weight)
pred_label = torch.argmax(pred_label, dim=1)
cls_f1score = f1_score(pred_label.detach().cpu().numpy(),
label.detach().cpu().numpy(),
average='macro')
_, avg_acc, cnt, pred_joints = pose_accuracy(
heatmap.detach().cpu().numpy(),
target.detach().cpu().numpy())
total_loss = class_loss + joints_loss
loss = {
"total_loss": total_loss,
"class_loss": class_loss.item(),
"joints_loss": joints_loss.item(),
}
return loss, pred_label, cls_f1score, \
pred_joints, heatmap, avg_acc, cnt, attnmap
def training_step(self, batch, batch_idx):
(loss, pred_label, cls_f1score, pred_joints,
heatmap, avg_acc, cnt, attnmap) = self.forward(batch, batch_idx)
self.train_count += cnt
self.train_total_acc += avg_acc * cnt
log = {}
for key, value in loss.items():
log[f"train/{key}"] = value
log.update({'train/cls_f1score': cls_f1score})
log.update({'train/pose_acc': self.train_total_acc / self.train_count})
self.log_dict(
log,
logger=True,
on_epoch=True,
on_step=True,
prog_bar=True,
batch_size=self.batch_size)
return {"loss": loss["total_loss"], "pred_label": pred_label,
"pred_joints": pred_joints, "heatmap": heatmap,
"attnmap": attnmap}
def validation_step(self, batch, batch_idx):
(loss, pred_label, cls_f1score, pred_joints,
heatmap, avg_acc, cnt, attnmap) = self.forward(batch, batch_idx)
self.val_count += cnt
self.val_total_acc += avg_acc * cnt
log = {}
for key, value in loss.items():
log[f"val/{key}"] = value
log.update({'val/cls_f1score': cls_f1score})
log.update({'val/pose_acc': self.val_total_acc / self.val_count})
self.log_dict(
log,
logger=True,
on_epoch=True,
prog_bar=True,
batch_size=self.batch_size)
return {"loss": loss["total_loss"], "pred_label": pred_label,
"pred_joints": pred_joints, "heatmap": heatmap,
"attnmap": attnmap}
def test_step(self, batch, batch_idx):
_, label, _, _, _ = batch
_, pred_label, _, _, _, _, _, _ = self.forward(batch, batch_idx)
self.y_pred.extend(pred_label.detach().cpu().numpy().tolist())
self.y_true.extend(label.detach().cpu().numpy().tolist())
def on_train_epoch_start(self):
self.train_count = 0
self.train_total_acc = 0
def on_validation_epoch_start(self):
self.val_count = 0
self.val_total_acc = 0
def on_train_batch_end(self, out, batch, batch_idx):
if batch_idx % 100 == 0:
img, label, target, _, meta = batch
pred_label = out["pred_label"]
pred_joints = out["pred_joints"]
heatmap = out["heatmap"]
attnmap = out["attnmap"]
prefix = '{}_{}'.format(
os.path.join(self.output_path, 'train'), batch_idx)
save_debug_images(
img, prefix, pred_label, label,
pred_joints*4, heatmap, meta, target, attnmap)
def on_validation_batch_end(self, out, batch, batch_idx):
if batch_idx % 100 == 0:
img, label, target, _, meta = batch
pred_label = out["pred_label"]
pred_joints = out["pred_joints"]
heatmap = out["heatmap"]
attnmap = out["attnmap"]
prefix = '{}_{}'.format(
os.path.join(self.output_path, 'val'), batch_idx)
save_debug_images(
img, prefix, pred_label, label,
pred_joints*4, heatmap, meta, target, attnmap)
def on_test_epoch_end(self):
cls_f1score = f1_score(self.y_pred, self.y_true, average='macro')
print("Test F1 Score: {:.4f}".format(cls_f1score))
# generate covariance matrix of predicted classes and ground truths
cm = confusion_matrix(self.y_pred, self.y_true)
cmd = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=self.names.keys())
fig, ax = plt.subplots(figsize=(10, 10))
cmd.plot(include_values=True, cmap='Blues', ax=ax, xticks_rotation=90)
plt.tight_layout()
plt.savefig(os.path.join(self.output_path, "confusion_matrix.png"))
def run(args, data_cfg):
assert args.image_size[0] == args.image_size[1], \
"Only support square images for now."
model_name = "{}_{}x{}_{}".format(
args.backbone, args.image_size[0], args.image_size[1], args.suffix)
save_path = os.path.join(args.save_dir, model_name)
os.makedirs(save_path, exist_ok=True)
dm = HandDataModule(
data_cfg,
args.image_size,
args.batch_size,
args.sigma,
args.num_workers)
module = MultiTaskModule(
data_cfg,
args.image_size,
args.batch_size,
args.lr, args.lr_step, args.lr_factor,
save_path)
lr_monitor = LearningRateMonitor(logging_interval='epoch')
ckpt_cb = ModelCheckpoint(
dirpath=os.path.join(save_path, "weight"),
filename="best",
monitor='val/total_loss',
mode='min',
save_top_k=1,
save_last=True,
save_weights_only=True)
callbacks = [lr_monitor, ckpt_cb]
logger = TensorBoardLogger(
save_dir=args.log_dir,
name=model_name)
trainer = Trainer(accelerator='gpu',
devices=[args.device],
precision=32,
max_epochs=args.epochs,
deterministic=True,
num_sanity_val_steps=1,
logger=logger,
callbacks=callbacks)
trainer.fit(module, dm)
# testing
trainer.test(module, dm, "best")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_config', type=str,
default='', help='path to the data config',
required=True)
parser.add_argument('--suffix', type=str,
default='', help='suffix of the model name',
required=True)
parser.add_argument('--device', type=int,
default=0, help='gpu device to be used')
parser.add_argument('--backbone', type=str,
default='gelans',
choices=['resnet18', 'resnet50', 'resnext50',
'gelans', 'gelanl'],
help='backbone to be used')
parser.add_argument('--batch_size', type=int,
default=32, help='batch size')
parser.add_argument('--epochs', type=int,
default=50, help='epochs')
parser.add_argument('--lr', type=float,
default=0.001, help='learning rate')
parser.add_argument('--lr_step', nargs='+', type=int,
default=[30, 40], help='learning rate step')
parser.add_argument('--lr_factor', type=float,
default=0.1, help='learning rate factor')
parser.add_argument('--image_size', nargs='+', type=int,
default=[192, 192],
help='image size (only support square images)')
parser.add_argument('--sigma', type=int,
default=2,
help='std of the gaussian distribution heatmap')
parser.add_argument('--log_dir', type=str,
default='logs',
help='directory to save the logs')
parser.add_argument('--save_dir', type=str,
default='output',
help='directory to save the output')
parser.add_argument('--num_workers', type=int,
default=8, help='number of workers for dataloader')
args = parser.parse_args()
print(args)
with open(args.data_config, "r") as stream:
try:
data_cfg = yaml.safe_load(stream)
except yaml.YAMLError as exc:
assert False, exc
run(args, data_cfg)