Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

PP-Matting C++部署示例

本目录下提供infer.cc快速完成PP-Matting在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。

在部署前,需确认以下两个步骤

以Linux上 PP-Matting 推理为例,在本目录执行如下命令即可完成编译测试(如若只需在CPU上部署,可在Fastdeploy C++预编译库下载CPU推理库)

#下载SDK,编译模型examples代码(SDK中包含了examples代码)
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.4.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.4.0.tgz
cd fastdeploy-linux-x64-gpu-0.4.0/examples/vision/matting/ppmatting/cpp/
mkdir build && cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.4.0
make -j

# 下载PP-Matting模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-Matting-512.tgz
tar -xvf PP-Matting-512.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg


# CPU推理
./infer_demo PP-Matting-512 matting_input.jpg matting_bgr.jpg 0
# GPU推理
./infer_demo PP-Matting-512 matting_input.jpg matting_bgr.jpg 1
# GPU上TensorRT推理
./infer_demo PP-Matting-512 matting_input.jpg matting_bgr.jpg 2

运行完成可视化结果如下图所示

以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:

PP-Matting C++接口

PPMatting类

fastdeploy::vision::matting::PPMatting(
        const string& model_file,
        const string& params_file = "",
        const string& config_file,
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::PADDLE)

PP-Matting模型加载和初始化,其中model_file为导出的Paddle模型格式。

参数

  • model_file(str): 模型文件路径
  • params_file(str): 参数文件路径
  • config_file(str): 推理部署配置文件
  • runtime_option(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
  • model_format(ModelFormat): 模型格式,默认为Paddle格式

Predict函数

PPMatting::Predict(cv::Mat* im, MattingResult* result)

模型预测接口,输入图像直接输出检测结果。

参数

  • im: 输入图像,注意需为HWC,BGR格式
  • result: 分割结果,包括分割预测的标签以及标签对应的概率值, MattingResult说明参考视觉模型预测结果

类成员属性

预处理参数

用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果