-
Notifications
You must be signed in to change notification settings - Fork 16
/
get_poses.m
106 lines (94 loc) · 4.04 KB
/
get_poses.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
function [model, res, corners, boards] = get_poses(intrinsics, corners, boards, imgsize, varargin)
%%%%%%%%%%%%%%%%%%%%%%%% Configurations
cfg.board_idxs = [];
cfg.img_paths = [];
cfg.save_results = [];
cfg.refine = 1;
cfg.debug = 0;
[cfg, varargin] = cmp_argparse(cfg, varargin{:});
[solver_cfg, sampler_cfg, ransac_cfg, opt_cfg] = parse_cfg(varargin{:});
if isempty(cfg.board_idxs)
cfg.board_idxs = 1:numel(boards);
end
TM = solver_cfg{6} ; % target_model
ny = imgsize(1);
nx = imgsize(2);
rng(1);
%%%%%%%%%%%%%%%%%%%%%%%% Solver
solver = WRAP.NPosesSolver('num_imgs', numel(corners),...
'proj_model', TM);
%%%%%%%%%%%%%%%%%%%%%%%% Process inputs
% x -- homogeneous image points;
% X -- 3D structure points; G -- dummy here
[x, X, G] = extract_pt_from_corners_mv(corners, boards, cfg.board_idxs);
meas = containers.Map();
meas('corners') = corners;
meas('pt') = x;
varinput = containers.Map();
varinput('boards') = boards;
varinput('pt') = X;
groups = containers.Map();
groups('pt') = G;
img_cspond = arrayfun(@(c) ones(1,size(c.x,2)), corners, 'UniformOutput',0);
img_cspond = cell2mat(cellfun(@(x,y) x*y, img_cspond,...
num2cell(1:numel(img_cspond)), 'UniformOutput', 0));
%%%%%%%%%%%%%%%%%%%%%%%% Normalize data
imcenter = [nx/2+0.5; ny/2+0.5];
A = intrinsics.K;
intrinsics.K = eye(3);
varinput('model') = intrinsics;
meas_norm = normalize_meas(meas, A);
opt_cfg{2} = opt_cfg{2} / A(1,1); % reprojT
%%%%%%%%%%%%%%%%%%%%%%%% RANSAC + Refinement
sampler = CalibSampler(solver.mss, groups, sampler_cfg{:});
opt = PosesOpt(img_cspond, boards, opt_cfg{:},...
'proj_fn', str2func(['RP2.project_' TM]));
display(['RANSAC-based camera pose estimation.'])
if cfg.refine
ransac = Ransac(solver, sampler, opt, opt, ransac_cfg{:});
else
ransac = Ransac(solver, sampler, opt, [], ransac_cfg{:});
end
[model, res, stats] = ransac.fit(meas_norm, varinput);
if isempty(model)
display('Did not return any model!');
return
end
%%%%%%%%%%%%%%%%%%%%%%%% Unnormalize results
opt_cfg{2} = opt_cfg{2} * A(1,1); % reprojT
display('Initial')
if cfg.refine
min_res = res.info.min_res;
min_model = res.info.min_model;
[min_model, min_res] = unnormalize_model(TM, min_model, min_res, A, corners, boards, opt_cfg{2});
res.info.min_res = min_res;
res.info.min_model = min_model;
display('Final')
end
[model, res] = unnormalize_model(TM, model, res, A, corners, boards, opt_cfg{2});
%%%%%%%%%%%%%%%%%%%%%%%% Save results
if ~isempty(cfg.save_results)
nowstr=num2str(yyyymmdd(datetime(floor(now),'ConvertFrom','datenum')));
pth = [cfg.save_results, '_poses_' nowstr '.mat'];
mkdir(fileparts(pth));
save(pth, 'model', 'res');
display(['Saved to ' pth])
end
end
function [model, res] = unnormalize_model(proj_model, model, res, A, corners, boards, reprojT)
model.K = A * model.K;
res.info.residual = A(1,1) * res.info.residual;
res.info.dx = A(1,1) * res.info.dx;
res.errs = A(1,1) * res.errs;
res.loss = A(1,1)^2 * res.loss;
if nargin > 4
[~,dx] = get_reprojerrs(corners, boards, model, proj_model);
res.reprojerrs = vecnorm(dx);
res.rms = rms(res.reprojerrs);
res.sqerrs = huberErr(res.reprojerrs, reprojT);
res.wrms = rms(res.info.w.*res.reprojerrs);
fprintf('\tfx: %3.4f fy: %3.4f cx: %3.4f cy: %3.4f\n', model.K(1,1), model.K(2,2), model.K(1,3), model.K(2,3));
fprintf('\tproj. params (%s): %3.4f %3.4f %3.4f %3.4f', proj_model, model.proj_params);
fprintf('\n\tReproj. Err. : %3.2f %c %3.2f (RMS %3.4f) px \n\tHuber Sqr. Err.: %3.2f %c %3.2f (RMS %3.4f) px \n\tConsensus set: %3.2f%%\n', mean(res.reprojerrs),177,std(res.reprojerrs), res.rms, mean(res.sqerrs),177,std(res.sqerrs), rms(res.sqerrs), res.ir*100);
end
end