-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert.py
35 lines (28 loc) · 1.1 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import math
import jieba
from transformers import BertTokenizer, BertForMaskedLM
import torch.nn.functional as F
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertForMaskedLM.from_pretrained('bert-base-chinese')
model.eval()
def get_ppl(sentence, temperature=1.0):
sentence = list(jieba.cut(sentence))
x = " ".join(sentence)
inputs = tokenizer(x, return_tensors="pt")
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
mask_id = tokenizer.mask_token_id
origin_ids = input_ids[0][1:-1].tolist()
length = len(origin_ids)
all_probability = []
for i in range(length):
tmp_input_ids = input_ids.clone()
tmp_input_ids[0, i + 1] = mask_id
outputs = model(tmp_input_ids, attention_mask=attention_mask).logits
outputs = F.softmax(outputs / temperature, dim=-1)
word_prob = outputs[0, i + 1, origin_ids[i]].item()
all_probability.append(word_prob)
l_score = sum(math.log(p, 2) for p in all_probability) / len(all_probability)
ppl = math.pow(2, -l_score)
return ppl