We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我使用python demo_text_detection.py --checkpoint pretrained_checkpoint/word_detection_totaltext.pth --model-type vit_h --input demo/001.jpg --output demo/ --dataset totaltext测试了一下自己的图片(纯文本的图片),发现漏了很多单词,第一张图漏了少量单词,第二张图大部分都漏了,这个是不是因为没有针对这种纯文本的数据进行训练的原因呢?
The text was updated successfully, but these errors were encountered:
这种数据应该用HierText上训的Hi-SAM
Sorry, something went wrong.
您指的是用python demo_hisam.py --checkpoint pretrained_checkpoint/hi_sam_h.pth --model-type vit_h --input demo/001.jpg --output demo/ 这个跑吗?这个跑出来效果下面是这样的
我还有两个问题想请教一下:1、如何返回切割后的所有框位置信息;2、我想要的切割结果是精确到每个字符,并且返回每个字符的bbox结果,是不是需要做包含每个字符位置信息的数据集,然后重新训练一下?
参照README 2.2 step1保存下来jsonl结果再可视化
No branches or pull requests
我使用python demo_text_detection.py --checkpoint pretrained_checkpoint/word_detection_totaltext.pth --model-type vit_h --input demo/001.jpg --output demo/ --dataset totaltext测试了一下自己的图片(纯文本的图片),发现漏了很多单词,第一张图漏了少量单词,第二张图大部分都漏了,这个是不是因为没有针对这种纯文本的数据进行训练的原因呢?
The text was updated successfully, but these errors were encountered: