@@ -167,8 +167,34 @@ def M (Λ : (X →ᵇ ℝ) →ₗ[ℝ] ℝ) : Set (Set X) :=
167
167
-- P.42 of Rudin "Real and Complex analysis"
168
168
-- Continue with "Proof that μ and M have the required properties"
169
169
170
+
171
+
172
+ /-- rieszContent' is monotone. -/
170
173
lemma rieszContent'_mono {E₁ E₂ : Set X} (h : E₁ ⊆ E₂) : rieszContent' Λ E₁ ≤ rieszContent' Λ E₂ := by
171
- sorry
174
+ apply sInf_le_sInf
175
+ apply Set.image_subset
176
+ intro V
177
+ simp only [mem_setOf_eq]
178
+ exact fun a ⦃a_1⦄ a_2 => a (h a_2)
179
+
180
+ /-- rieszContent' coincides with rieszContentAux' on open sets. -/
181
+ lemma rieszContent'_eq_rieszContentAux'_open (V : Opens X) :
182
+ rieszContent' Λ V = rieszContentAux' Λ V := by
183
+ have hle : rieszContent' Λ V ≤ rieszContentAux' Λ V := by
184
+ apply sInf_le_of_le
185
+ use V
186
+ simp only [SetLike.coe_subset_coe, mem_setOf_eq, le_refl, true_and]
187
+ rfl
188
+ exact rieszContentAux'_mono Λ fun ⦃a⦄ a => a
189
+ have hge : rieszContentAux' Λ V ≤ rieszContent' Λ V := by
190
+ apply le_sInf
191
+ intro x hx
192
+ simp only [SetLike.coe_subset_coe, mem_image, mem_setOf_eq] at hx
193
+ obtain ⟨V', hV'⟩ := hx
194
+ rw [← hV'.2 ]
195
+ exact rieszContentAux'_mono Λ hV'.1
196
+ exact le_antisymm hle hge
197
+
172
198
173
199
lemma in_M_F_of_rieszContent'_zero {E : Set X} (h : rieszContent' Λ E = 0 ) : E ∈ M_F Λ := by
174
200
sorry
@@ -178,10 +204,15 @@ lemma in_M_of_rieszContent'_zero {E : Set X} (h : rieszContent' Λ E = 0) : E
178
204
179
205
/-- The Riesz content μ associated to a given positive linear functional Λ is
180
206
finitely subadditive for open sets : `μ (V₁ ∪ V₂) ≤ μ(V₁) + μ(V₂)`. -/
181
- theorem rieszContentAux'_sup_le (V₁ V₂ : Opens X) :
207
+ lemma rieszContentAux'_sup_le (V₁ V₂ : Opens X) :
182
208
rieszContentAux' Λ (V₁ ⊔ V₂) ≤ rieszContentAux' Λ V₁ + rieszContentAux' Λ V₂ := by
183
209
sorry
184
210
211
+ /-- The Riesz content can be approximated arbitrarily well from outside by open sets. -/
212
+ lemma exists_lt_rieszContent'_add_pos {E : Set X} (hE : rieszContent' Λ E < ∞)
213
+ {ε : ℝ≥0 } (εpos : 0 < ε) : ∃ (V : Opens X), rieszContent' Λ V < rieszContent' Λ E + ε := by
214
+ sorry
215
+
185
216
186
217
open ZeroAtInfty
187
218
0 commit comments