Skip to content

Commit 724312c

Browse files
committed
Update RMK.lean
1 parent cc41a6b commit 724312c

File tree

1 file changed

+33
-2
lines changed

1 file changed

+33
-2
lines changed

yoh/RMK/RMK.lean

Lines changed: 33 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -167,8 +167,34 @@ def M (Λ : (X →ᵇ ℝ) →ₗ[ℝ] ℝ) : Set (Set X) :=
167167
-- P.42 of Rudin "Real and Complex analysis"
168168
-- Continue with "Proof that μ and M have the required properties"
169169

170+
171+
172+
/-- rieszContent' is monotone. -/
170173
lemma rieszContent'_mono {E₁ E₂ : Set X} (h : E₁ ⊆ E₂) : rieszContent' Λ E₁ ≤ rieszContent' Λ E₂ := by
171-
sorry
174+
apply sInf_le_sInf
175+
apply Set.image_subset
176+
intro V
177+
simp only [mem_setOf_eq]
178+
exact fun a ⦃a_1⦄ a_2 => a (h a_2)
179+
180+
/-- rieszContent' coincides with rieszContentAux' on open sets. -/
181+
lemma rieszContent'_eq_rieszContentAux'_open (V : Opens X) :
182+
rieszContent' Λ V = rieszContentAux' Λ V := by
183+
have hle : rieszContent' Λ V ≤ rieszContentAux' Λ V := by
184+
apply sInf_le_of_le
185+
use V
186+
simp only [SetLike.coe_subset_coe, mem_setOf_eq, le_refl, true_and]
187+
rfl
188+
exact rieszContentAux'_mono Λ fun ⦃a⦄ a => a
189+
have hge : rieszContentAux' Λ V ≤ rieszContent' Λ V := by
190+
apply le_sInf
191+
intro x hx
192+
simp only [SetLike.coe_subset_coe, mem_image, mem_setOf_eq] at hx
193+
obtain ⟨V', hV'⟩ := hx
194+
rw [← hV'.2]
195+
exact rieszContentAux'_mono Λ hV'.1
196+
exact le_antisymm hle hge
197+
172198

173199
lemma in_M_F_of_rieszContent'_zero {E : Set X} (h : rieszContent' Λ E = 0) : E ∈ M_F Λ := by
174200
sorry
@@ -178,10 +204,15 @@ lemma in_M_of_rieszContent'_zero {E : Set X} (h : rieszContent' Λ E = 0) : E
178204

179205
/-- The Riesz content μ associated to a given positive linear functional Λ is
180206
finitely subadditive for open sets : `μ (V₁ ∪ V₂) ≤ μ(V₁) + μ(V₂)`. -/
181-
theorem rieszContentAux'_sup_le (V₁ V₂ : Opens X) :
207+
lemma rieszContentAux'_sup_le (V₁ V₂ : Opens X) :
182208
rieszContentAux' Λ (V₁ ⊔ V₂) ≤ rieszContentAux' Λ V₁ + rieszContentAux' Λ V₂ := by
183209
sorry
184210

211+
/-- The Riesz content can be approximated arbitrarily well from outside by open sets. -/
212+
lemma exists_lt_rieszContent'_add_pos {E : Set X} (hE : rieszContent' Λ E < ∞)
213+
{ε : ℝ≥0} (εpos : 0 < ε) : ∃ (V : Opens X), rieszContent' Λ V < rieszContent' Λ E + ε := by
214+
sorry
215+
185216

186217
open ZeroAtInfty
187218

0 commit comments

Comments
 (0)