From 7e236001e435cf2ab108bd1769a949bd932e5631 Mon Sep 17 00:00:00 2001 From: Yoh Tanimoto Date: Thu, 7 Mar 2024 11:29:15 +0100 Subject: [PATCH] Update WeakTopology.lean --- WeakTopology/WeakTopology.lean | 48 +++++++++++++++++++++++++++++++--- 1 file changed, 45 insertions(+), 3 deletions(-) diff --git a/WeakTopology/WeakTopology.lean b/WeakTopology/WeakTopology.lean index 0ab8f4829351e2..3a70bdd44994b8 100644 --- a/WeakTopology/WeakTopology.lean +++ b/WeakTopology/WeakTopology.lean @@ -4,11 +4,10 @@ variable {𝕜 : Type*} [NontriviallyNormedField 𝕜] variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] -open NormedSpace - +open NormedSpace Filter Set theorem norm_topology_le_weak_topology : -(UniformSpace.toTopologicalSpace : TopologicalSpace E) ≤ + (UniformSpace.toTopologicalSpace : TopologicalSpace E) ≤ (WeakSpace.instTopologicalSpace : TopologicalSpace (WeakSpace 𝕜 E)) := by apply Continuous.le_induced refine continuous_pi ?h.h @@ -19,3 +18,46 @@ theorem norm_topology_le_weak_topology : exact topDualPairing_apply y x rw [this] exact ContinuousLinearMap.continuous y + + +theorem weak_convergence_of_norm_convergence + (x : ℕ → E) (p : E) (hx : Tendsto x atTop (nhds p)) : + Tendsto (fun n ↦ (x n : (WeakSpace 𝕜 E))) atTop (nhds (p : (WeakSpace 𝕜 E))) := by + sorry +-- the statement is wrong, as x is always interpreted as E, not WeakSpace. + +lemma tendsto_continuous_tendsto {X Y Z : Type*} [TopologicalSpace Y] [TopologicalSpace Z] + {F : Filter X} {f : X → Y} {g : Y → Z} + (y : Y) (hf : Tendsto f F (nhds y)) (hg : Continuous g) : + Tendsto (g ∘ f) F (nhds (g y)) := by + exact Tendsto.comp (Continuous.tendsto hg y) hf + +theorem functional_convergence_of_norm_convergence + (x : ℕ → E) (p : E) (hx : Tendsto x atTop (nhds p)) : + ∀ (y : E →L[𝕜] 𝕜), Tendsto (fun n => y (x n)) atTop (nhds (y p)) := by + intro y + exact Tendsto.comp (Continuous.tendsto (ContinuousLinearMap.continuous y) p) hx + + +variable (x : E) +variable (z : WeakSpace 𝕜 E) +variable (n : ℕ) +#check (x : WeakSpace 𝕜 E) +#check nhds (x : WeakSpace 𝕜 E) +#check nhds z +#check nhds n +#check nhds (n : ℝ) +#check (n : ℝ) + +variable (y : E →L[𝕜] 𝕜) +variable (z : WeakDual 𝕜 E) +#check nhds (y : WeakDual 𝕜 E) +#check nhds z + + +theorem norm_convergence_of_weak_convergence + (x : ℕ → (WeakSpace 𝕜 E)) (p : (WeakSpace 𝕜 E)) (hx : Tendsto x atTop (nhds p)) : + Tendsto (fun n ↦ (x n : E)) atTop (nhds (p : E)) := by + exact hx +-- something is wrong. the statement is not interpreted as intended +-- because this second claim cannot be true