-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathopts.py
139 lines (119 loc) · 5.92 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
from model import CausalGCN, CausalGIN, CausalGAT, GINNet, GCNNet, GATNet
import numpy as np
import random
import torch
from itertools import product
def parse_args():
str2bool = lambda x: x.lower() == "true"
parser = argparse.ArgumentParser()
parser.add_argument('--step_size', type=float, default=0.001)
parser.add_argument('--min_lr', type=float, default=1e-6)
#################### toy example #######################
parser.add_argument('--pretrain', type=int, default=30)
parser.add_argument('--data_num', type=int, default=2000)
parser.add_argument('--node_num', type=int, default=15)
parser.add_argument('--max_degree', type=int, default=10)
parser.add_argument('--feature_dim', type=int, default=-1)
parser.add_argument('--noise', type=float, default=0.1)
parser.add_argument('--num_classes', type=int, default=4)
parser.add_argument('--shape_num', type=int, default=1)
parser.add_argument('--bias', type=float, default=0.5)
parser.add_argument('--penalty_weight', default=0.1, type=float, help='penalty weight')
parser.add_argument('--train_type', type=str, default="base", help="irm, dro, base")
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--the', type=int, default=0)
parser.add_argument('--with_random', type=str2bool, default=True)
parser.add_argument('--eval_random', type=str2bool, default=False)
parser.add_argument('--normalize', type=str2bool, default=False)
parser.add_argument('--save_model', type=str2bool, default=False)
parser.add_argument('--inference', type=str2bool, default=False)
parser.add_argument('--without_node_attention', type=str2bool, default=False)
parser.add_argument('--without_edge_attention', type=str2bool, default=False)
parser.add_argument('--k', type=int, default=3)
#################### Causal GNN settings #######################
parser.add_argument('--layers', type=int, default=3)
parser.add_argument('--c', type=float, default=0.5)
parser.add_argument('--o', type=float, default=1.0)
parser.add_argument('--co', type=float, default=0.5)
parser.add_argument('--harf_hidden', type=float, default=0.5)
parser.add_argument('--cat_or_add', type=str, default="add")
##################### baseline training ######################
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--folds', type=int, default=10)
parser.add_argument('--fc_num', type=str, default="222")
parser.add_argument('--data_root', type=str, default="data")
parser.add_argument('--save_dir', type=str, default="debug")
parser.add_argument('--dataset', type=str, default="NCI1")
parser.add_argument('--epoch_select', type=str, default='test_max')
parser.add_argument('--model', type=str, default="GCN", help="GCN, GIN")
parser.add_argument('--hidden', type=int, default=128)
parser.add_argument('--seed', type=int, default=666)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lr_decay_factor', type=float, default=0.5)
parser.add_argument('--lr_decay_step_size', type=int, default=500)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--global_pool', type=str, default="sum")
args = parser.parse_args()
print_args(args)
setup_seed(args.seed)
return args
def print_args(args, str_num=80):
for arg, val in args.__dict__.items():
print(arg + '.' * (str_num - len(arg) - len(str(val))) + str(val))
print()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_model(args):
def model_func1(num_features, num_classes):
return GCNNet(num_features, num_classes, args.hidden)
def model_func2(num_features, num_classes):
return GINNet(num_features, num_classes, args.hidden)
def model_func3(num_features, num_classes):
return GATNet(num_features, num_classes, args.hidden)
def model_func4(num_features, num_classes):
return CausalGCN(num_features, num_classes, args)
def model_func5(num_features, num_classes):
return CausalGIN(num_features, num_classes, args)
def model_func6(num_features, num_classes):
return CausalGAT(num_features, num_classes, args)
if args.model == "GCN":
model_func = model_func1
elif args.model == "GIN":
model_func = model_func2
elif args.model == "GAT":
model_func = model_func3
elif args.model == "CausalGCN":
model_func = model_func4
elif args.model == "CausalGIN":
model_func = model_func5
elif args.model == "CausalGAT":
model_func = model_func6
else:
assert False
return model_func
def create_n_filter_triples(datasets,
feat_strs=['deg+odeg100'],
nets=['ResGCN'],
gfn_add_ak3=True,
gfn_reall=True,
reddit_odeg10=True,
dd_odeg10_ak1=True):
triples = [(d, f, n) for d, f, n in product(datasets, feat_strs, nets)]
triples_filtered = []
for dataset, feat_str, net in triples:
# Replace degree feats for REDDIT datasets (less redundancy, faster).
if reddit_odeg10 and dataset in ['REDDIT-BINARY', 'REDDIT-MULTI-5K', 'REDDIT-MULTI-12K']:
feat_str = feat_str.replace('odeg100', 'odeg10')
# Replace degree and akx feats for dd (less redundancy, faster).
if dd_odeg10_ak1 and dataset in ['DD']:
feat_str = feat_str.replace('odeg100', 'odeg10')
feat_str = feat_str.replace('ak3', 'ak1')
triples_filtered.append((dataset, feat_str, net))
return triples_filtered