-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrepair_tword_index.py
74 lines (67 loc) · 2.71 KB
/
repair_tword_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# repair the tokenization of contextual sentences in WiC instance file
# last maintained: 2024-05-12 13:36:43
# Usage example: $ python repair_tword_index.py train
import pandas as pd
from nltk.tokenize.treebank import TreebankWordDetokenizer
detokenizer = TreebankWordDetokenizer()
def repair_tword_index(dataset='train', outfname=None):
infname = './WiC_dataset/{dataset}/{dataset}.data.txt'.format(dataset=dataset)
if not outfname:
outfname = './WiC_dataset_repaired/{dataset}/{dataset}_new.data.txt'.format(infset=dataset)
#
df = pd.read_csv(infname, delimiter='\t', names=['w', 'p', 'idxs', 'c1', 'c2'], na_filter=None)
with open(outfname, 'w') as outf:
outf.write('\t'.join(['w', 'p', 'idxs', 'c1', 'c2'])+'\n')
for inst in df.iloc:
w1_idx, w2_idx = [int(_) for _ in inst['idxs'].split('-')]
new_w1_idx, new_c1 = repair_tword_index_(w1_idx, inst['c1'])
new_w2_idx, new_c2 = repair_tword_index_(w2_idx, inst['c2'])
new_idx = '-'.join([str(new_w1_idx), str(new_w2_idx)])
outfline = '\t'.join([inst['w'], inst['p'], new_idx, new_c1, new_c2])
outf.write(outfline+'\n')
#
import re
def repair_tword_index_(orig_index, orig_sent):
orig_tokens = orig_sent.split()
tw_form = orig_tokens[orig_index]
#print('tw_form:', tw_form)
repaired_sentence = detokenizer.detokenize(orig_tokens)
#print('repaired sentence:', repaired_sentence)
repaired_tokens = re.findall(r'\w+|[^\w\s]', repaired_sentence)
#print('repaired tokens:', repaired_tokens)
try:
new_index = repaired_tokens.index(tw_form)
except ValueError:
print('Whao!')
print('tw_form:', tw_form)
print('repaired sentence:', repaired_sentence)
print('repaired tokens:', repaired_tokens)
new_index = seek_index(repaired_tokens, tw_form)
if new_index==-1:
new_index = seek_index2(repaired_tokens, tw_form)
print('new index:', new_index)
#return new_index, repaired_sentence
return new_index, ' '.join(repaired_tokens)
def seek_index(tokens, tw_form):
for i, token in enumerate(tokens):
if token.startswith(tw_form):
return i
return -1
import Levenshtein
import numpy as np
def seek_index2(tokens, tw_form):
print('last resort using Levenshtein:', tokens, tw_form)
sims = [Levenshtein.ratio(t, tw_form) for t in tokens]
return np.argmax(sims)
#####
import sys
if __name__ == '__main__':
if len(sys.argv) < 3:
outfname = None
else:
outfname = sys.argv[2]
if len(sys.argv) < 2:
dataset = 'train'
else:
dataset = sys.argv[1]
repair_tword_index(dataset=dataset, outfname=outfname)