-
Notifications
You must be signed in to change notification settings - Fork 1
/
julia-community.jl
562 lines (477 loc) · 25.6 KB
/
julia-community.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
"""
This program is to discover and plot the communities of a network by leiden algorithm
NOTE: the leiden algorithm is implemented by the python package leidenalg, so
before doing community discovery, Conda, PyCall have to be installed as
follows:
import Pkg
Pkg.add("Conda")
Pkg.add("PyCall")
Pkg.build("PyCall")
using Conda
Conda.pip_interop(true)
#Conda.pip("install", "scipy")
#Conda.pip("install", "numpy")
Conda.pip("install", "leidenalg")
Contributors: Xiaoshan Nian
Date: August, 2020
Email: cen@njust.edu.cn
Github: https://github.com/yottoo/JuliaCommunity
"""
module JuliaCommunity
using LightGraphs, SimpleWeightedGraphs, GraphPlot
using PyCall
using DataFrames, CSV
using Statistics, StatsBase, Random
using Parameters, ProgressMeter
using Gadfly, Cairo, Compose
export JuliaCommunityInstance,
discover_communities,
optimise_resolution,
save,
plot_community,
compute_cluster_coef
const leiden = pyimport("leidenalg")
const ig = pyimport("igraph")
@with_kw mutable struct PartitionMethod
louvain::String = "louvain"
CPM::String = "CPM"
modularity::String = "modularity"
end
@with_kw mutable struct JuliaCommunityInstance
task_series::String = ""
methods::PartitionMethod = PartitionMethod()
method::String = "CPM" # CPM, Modularity (for leiden algorithm) and Louvain
"""
NETWORK: the network data.
from: id of the node from
to: id of the node to
weight: edge weight (if edge_weighted is false, this column could be ignored)
NODES: the data for nodes, with ID required
id: node id
NODE_IMPORTANCES: the importances of vertices
id: node id
importance
"""
network::DataFrame = DataFrame()
graph = nothing
igraph = nothing
nodes::DataFrame = DataFrame()
max_node_id::Int = 1
node_importance_field::String = "importance"
node_label_field::String = "id"
edge_weighted::Bool = true
node_weighted::Bool = false
is_directed::Bool = true
γ::Float16 = 0.001
"""
COMMUNITIES: communities discovered.
c: community id (start from 1)
size: community size
cluster_cof: clustering coefficent of the community
MEMBERSHIPS: memberships indicating the nodes belonging to communities
id: node id
c: community id
"""
communities::DataFrame = DataFrame()
membership_vector::Array{Int} = []
memberships::DataFrame = DataFrame()
n_community::Int = 0
modularity::Float64 = 0
quality::Float64 = 0
end
function JuliaCommunityInstance(network::DataFrame;
nodes::DataFrame=DataFrame(),
node_label_field::String="id",
node_importance_field="importance",
edge_weighted::Bool=true,
node_weighted::Bool=false,
is_directed::Bool=true,
method::String="CPM",
to_summarise_graph::Bool=true,
task_series::String="",)
filter!(row -> row.from > 0 && row.to > 0, network)
jc = JuliaCommunityInstance()
jc.task_series = replace("_" * replace(task_series, "-" => "_"), "__" => "_")
set_method(jc, method=method)
print("\nLoading the network and nodes data...")
jc.network = network
check_network(jc)
jc.nodes = nodes
check_nodes(jc)
jc.max_node_id = maximum(jc.nodes.id)
jc.node_importance_field = node_importance_field
jc.node_label_field = node_label_field
jc.edge_weighted = edge_weighted
jc.node_weighted = node_weighted
jc.is_directed = is_directed
if edge_weighted
filter!(row -> row.weight > 0, jc.network)
#= ============================================
else if !is_directed
jc.network = vcat(jc.network, jc.network)
unique(jc.network)
============================================ =#
end
print("\n\tBuilding the graph from the network...")
if jc.is_directed && jc.edge_weighted
jc.graph = SimpleWeightedDiGraph(jc.network.from, jc.network.to, jc.network.weight)
jc.igraph = ig.Graph(zip(jc.network.from .- 1, jc.network.to .- 1), directed=true, edge_attrs=Dict("weight" => jc.network.weight))
elseif jc.is_directed
jc.graph = SimpleDiGraph(jc.max_node_id)
for i in 1:nrow(jc.network) add_edge!(jc.graph, jc.network.from[i], jc.network.to[i]) end
jc.igraph = ig.Graph(zip(jc.network.from .- 1, jc.network.to .- 1), directed=true)
elseif jc.edge_weighted
jc.graph = SimpleWeightedGraph(jc.network.from, jc.network.to, jc.network.weight)
jc.igraph = ig.Graph(zip(jc.network.from .- 1, jc.network.to .- 1), directed=false, edge_attrs=Dict("weight" => jc.network.weight))
else
jc.graph = SimpleGraph(jc.max_node_id)
for i in 1:nrow(jc.network) add_edge!(jc.graph, jc.network.from[i], jc.network.to[i]) end
jc.igraph = ig.Graph(zip(jc.network.from .- 1, jc.network.to .- 1), directed=false)
end
if to_summarise_graph summarise_graph(jc) end
jc
end
function check_network(jc::JuliaCommunityInstance)
columns = names(jc.network)
if isnothing(findfirst(name -> name == "from", columns)) throw(error("The network data must have a 'from' column.")) end
if isnothing(findfirst(name -> name == "to", columns)) throw(error("The network data must have a 'to' column.")) end
if jc.edge_weighted && isnothing(findfirst(name -> name == "weight", columns)) throw(error("The network data must have a 'weight' column.")) end
end
function check_nodes(jc::JuliaCommunityInstance)
columns = names(jc.nodes)
if isnothing(findfirst(name -> name == "id", columns)) throw(error("The nodes data must have a 'id' column.")) end
end
function set_method(jc::JuliaCommunityInstance; method::String="CPM")
jc.method = method
if (jc.method != jc.methods.louvain && jc.method != jc.methods.CPM && jc.method != jc.methods.modularity)
throw(error("The partition method has to be louvain, CMP or modularity."))
end
end
function summarise_graph(jc::JuliaCommunityInstance)
print("\n\tSummary of the graph built on the network: ")
print("\n\t\tNodes: $(nv(jc.graph))[$(nrow(jc.nodes))]")
print("\n\t\tEdges: $(ne(jc.graph))")
print("\n\t\tDensity: $(density(jc.graph))")
print("\n\t\tDiameter: $(jc.igraph.diameter())")
print("\n\t\tAverage path length: $(jc.igraph.average_path_length(directed=jc.is_directed))")
print("\n\t\tClustering coefficient: $(global_clustering_coefficient(jc.graph))")
print("\n\t\tModularity: $(modularity(jc.graph, fill(1, nv(jc.graph)), γ=1.0))\n")
end
function plot_network(jc::JuliaCommunityInstance; fig_path::String="fig", mute::Bool=false, node_size_smoother::Float64=0.5, edge_width_smoother::Float64=0.5, line_type::String="straight", arrow_length_frac::Float64=0.015, arrow_angle::Float64=π / 8)
if !mute print("\n\nPlotting the network graph......\n\t") end
g = jc.graph
if nv(g) > 5000 throw(error("It makes no sense to plot a huge network with more than 5000 vertices.")) end
labels = jc.nodes[:, jc.node_label_field]
nodesize = jc.node_weighted ? jc.nodes[:, jc.node_importance_field].^node_size_smoother : fill(1, nv(g))
# labels[findall(size -> size < ceil(ne(jc.graph) / 100), nodesize)] .= ""
# nodesize = log.(nodesize .+ 1)
# edge_weights = jc.network[:weight].^0.72
edge_weight = jc.edge_weighted ? jc.network.weight.^edge_width_smoother : fill(1, ne(g))
# g = Graph(adjacency_matrix(g))
node_colorss = ["orange", "purple", "turquoise", "green", "red", "blue", "violet", "olive", "tan", "magenta", "cyan", "pink", "gold"]
edge_colors = ["navajowhite3", "coral2", "orange3", "yellow3", "yellowgreen", "turquoise", "lightskyblue", "mediumpurple1", "hotpink2", "tan3", "grey64"]
shuffle!(node_colorss)
# node_colors = colors[1 .+ Int.((length(colors) - 1) .* ceil.((nodesize .- minimum(nodesize)) ./ (maximum(nodesize) - minimum(nodesize))))]
# edge_colors = colors[1 .+ Int.((length(colors) - 1) .* ceil.((weights .- minimum(weights)) ./ (maximum(weights) - minimum(weights))))]
#= ========================================================================
Further partition the target community and render each sub partition with a same color
======================================================================== =#
igraph = jc.igraph
categories = leiden.find_partition(igraph, leiden.ModularityVertexPartition)
# categories = leiden.find_partition(igraph, leiden.CPMVertexPartition, resolution_parameter= 1 / nv(g))
node_colors = node_colorss[(categories.membership .+ 1) .% length(node_colorss) .+ 1]
# layout = (args...) -> spring_layout(args...; C = 12) # where C influences the desired distance between nodes.
run_label = "$(jc.method)-$(jc.γ)$(jc.task_series)"
plot = nothing
if jc.is_directed
plot = gplot(g, nodesize=nodesize, nodelabel=labels,
nodelabeldist=0.2, nodelabelangleoffset=π / 4,
nodelabelsize=nodesize, edgelinewidth=edge_weight,
nodefillc=node_colors,
nodelabelc=node_colors,
linetype=line_type,
edgestrokec=edge_colors[rand(1:length(edge_colors), 1)[1]], arrowlengthfrac=arrow_length_frac, arrowangleoffset=arrow_angle
);
# or linetype = "curve" or "straight"
# edgestrokec = edge_colors,
# edgestrokec=colors[rand(1:length(colors), 1)[1]]
else
plot = gplot(g, nodesize=nodesize, nodelabel=labels,
nodelabeldist=0.2, nodelabelangleoffset=π / 4,
nodelabelsize=nodesize, edgelinewidth=edge_weight,
nodefillc=node_colors,
nodelabelc=node_colors,
linetype=line_type,
edgestrokec=edge_colors[rand(1:length(edge_colors), 1)[1]]);
end
if !ispath(fig_path) mkpath(fig_path) end
filename = "$fig_path/network-graph-$run_label.svg"
draw(SVG(filename, 20cm, 16cm), plot);
open_file(filename)
end
"""
caculate_centralities: Caculate the centralities of the network.
Note: for weighted networks, eigenvector centrality measure may not lead to convergency.
"""
function caculate_centralities(jc::JuliaCommunityInstance; to_save::Bool=true)
print("\n\tCaculating the centralities of the target network......\n")
centralities = DataFrame(id=collect(vertices(jc.graph)))
insertcols!(centralities, "btw_cent" => betweenness_centrality(jc.graph),
"close_cent" => closeness_centrality(jc.graph),
"in_cent" => indegree_centrality(jc.graph),
"out_cent" => outdegree_centrality(jc.graph),
"eigen_cent" => eigenvector_centrality(jc.graph),
"katz_cent" => katz_centrality(jc.graph, 0.3),
"stress_cent" => stress_centrality(jc.graph),
"radia_cent" => radiality_centrality(jc.graph))
insertcols!(centralities, "btw_cent_rank" => competerank(centralities[:, "btw_cent"], rev=true),
"close_cent_rank" => competerank(centralities[:, "close_cent"], rev=true),
"in_cent_rank" => competerank(centralities[:, "in_cent"], rev=true),
"out_cent_rank" => competerank(centralities[:, "out_cent"], rev=true),
"eigen_cent_rank" => competerank(centralities[:, "eigen_cent"], rev=true),
"katz_cent" * "_rank" => competerank(centralities[:, "katz_cent"], rev=true),
"stress_cent_rank" => competerank(centralities[:, "stress_cent"], rev=true),
"radia_cent" * "_rank" => competerank(centralities[:, "radia_cent"], rev=true))
centralities = leftjoin(jc.nodes, centralities, on=:id)
if to_save
save_path = "data/centralities$(jc.task_series).csv"
centralities_merged = ispath(save_path) ? hcat(CSV.File(save_path) |> DataFrame, centralities) : centralities
CSV.write(save_path, centralities_merged)
end
centralities
end
"""
_louvain: the louvain algorithm implemented by leiden package
"""
function _louvain(g)
optimiser = leiden.Optimiser()
partitions = leiden.ModularityVertexPartition(g)
partitions_agg = partitions.aggregate_partition()
while optimiser.move_nodes(partitions) > 0
partitions.from_coarse_partition(partitions_agg)
partitions_agg = partitions_agg.aggregate_partition()
end
partitions
end
"""
discover_communities: discover the communities by leiden algorithm (both CMP and modularity method)
and louvain algorithm.
"""
function discover_communities(jc::JuliaCommunityInstance; mute::Bool=false)
if !mute print("\nDiscovering the communities for the built network......") end
partitions = nothing
if jc.method == jc.methods.CPM
partitions = leiden.find_partition(jc.igraph, leiden.CPMVertexPartition, resolution_parameter=jc.γ)
elseif jc.method == jc.methods.modularity
partitions = leiden.find_partition(jc.igraph, leiden.ModularityVertexPartition)
elseif jc.method == jc.methods.louvain
partitions = _louvain(jc.igraph)
end
if isnothing(partitions) return end
jc.n_community = length(partitions)
if !mute println("\t\t$(jc.n_community) communities have been discovered.") end
# partitions = leiden.find_partition(g, leiden.ModularityVertexPartition, resolution_parameter=0.2)
# The following code could not be done to Leiden community members
# for i in 1:length(partitions) partitions[i] .+= 1 end
# partitions.membership .+= 1
jc.membership_vector = partitions.membership .+ 1
# println(partitions.membership)
jc.modularity = modularity(jc.graph, jc.membership_vector, γ=1.0)
jc.quality = jc.method == jc.methods.CPM ? partitions.quality() : jc.modularity
jc.memberships = DataFrame(id=1:maximum(vcat(jc.network.from, jc.network.to)), c=jc.membership_vector)
# jc.memberships = DataFrame(id=1:nv(g), c=jc.membership_vector)
jc.communities = DataFrame(c=1:jc.n_community, size=length.(partitions))
end
function optimise_resolution(jc::JuliaCommunityInstance; γ_from::Float64=0.0001, γ_end::Float64=0.01, γ_step::Float64=0.0001)
println("\n")
qualities = DataFrame(resolution=[], n_community=[], modularity=[], quality=[])
jc_copy = deepcopy(jc)
progress = Progress(length(γ_from:γ_step:γ_end), desc="Finding the best resolution γ for the Leiden-based community discovery algorithm: ")
for γ in γ_from:γ_step:γ_end
jc_copy.γ = γ
discover_communities(jc_copy, mute = true)
push!(qualities, (γ, jc_copy.n_community, jc_copy.modularity, jc_copy.quality))
next!(progress)
#print("\n\t\tResolution: $γ: $(jc_copy.n_community) commxunities discovered; Modularity: $(jc_copy.modularity); CPM Quality: $(jc_copy.quality).")
end
CSV.write("data/community_discover_optimisation-$(jc.method)$(jc.task_series).csv", qualities)
p_modularity = plot(
layer(qualities, x=:resolution, y=:modularity, Geom.line, Geom.point, Theme(default_color="blue")),
Guide.xticks(ticks=γ_from:γ_step * 2:γ_end),
Guide.xlabel("resolution γ"),
Guide.ylabel("modularity"),
Theme(major_label_font_size=10pt),
Scale.y_continuous(format=:plain)
)
fig_modularity = "fig/community_discover_optimisation-modularities-$(jc.method)$(jc.task_series).svg"
draw(SVG(fig_modularity, 24cm, 16cm), p_modularity);
open_file(fig_modularity)
p_quality = plot(
layer(qualities, x=:resolution, y=:quality, Geom.line, Geom.point, Theme(default_color="blue")),
Guide.xticks(ticks=γ_from:γ_step * 2:γ_end),
Guide.xlabel("resolution γ"),
Guide.ylabel("quality"),
Theme(major_label_font_size=10pt),
Scale.y_continuous(format=:plain)
)
fig_quality = "fig/community_discover_optimisation-qualities-$(jc.method)$(jc.task_series).svg"
draw(SVG(fig_quality, 24cm, 16cm), p_quality);
open_file(fig_quality)
p_n_communities = plot(
layer(qualities, x=:resolution, y=:n_community, Geom.line, Geom.point, Theme(default_color="blue")),
Guide.xticks(ticks=γ_from:γ_step * 2:γ_end),
Guide.xlabel("resolution γ"),
Guide.ylabel("number of communities"),
Theme(major_label_font_size=10pt),
Scale.y_continuous(format=:plain)
)
fig_n_communities = "fig/community_discover_optimisation-n-communities-$(jc.method)$(jc.task_series).svg"
draw(SVG(fig_n_communities, 24cm, 16cm), p_n_communities);
open_file(fig_n_communities)
end
function save(jc::JuliaCommunityInstance; file::String="data/communities")
print("\n\nSaving the communities discovery outcomes......\n")
run_label = "$(jc.method)-$(jc.γ)$(jc.task_series)"
CSV.write("$file-$run_label.csv", jc.communities)
CSV.write("$file-memberships-$run_label.csv", jc.memberships)
end
function build_community_graph(jc::JuliaCommunityInstance, c::Int; to_save_data::Bool=true, mute::Bool=false)
if !mute print("\tBuilding the graph for community $c......\n\t") end
community = select(filter(row -> row.c == c, jc.memberships), Not(:c))
if nrow(community) < 2 return (graph = nothing, edges = 1) end
sort!(community, :id)
community_size = nrow(community)
nodes = DataFrame(_label=community.id, new_id=1:nrow(community))
if jc.node_weighted
nodes = select(innerjoin(nodes, select(jc.nodes, "id", jc.node_importance_field), on=:_label => :id), "_label", "new_id", jc.node_importance_field => "importance")
end
if jc.edge_weighted
sub_network = rename(select(innerjoin(nodes, jc.network, on=:_label => :from), [:new_id, :to, :weight]), :new_id => "from")
sub_network = rename(select(innerjoin(nodes, sub_network, on=:_label => :to), [:new_id, :from, :weight]), :new_id => "to")
else
sub_network = rename(select(innerjoin(nodes, jc.network, on=:_label => :from), [:new_id, :to]), :new_id => "from")
sub_network = rename(select(innerjoin(nodes, sub_network, on=:_label => :to), [:new_id, :from]), :new_id => "to")
end
# There may be communities in which all nodes are not connected to others
if nrow(sub_network) <= 0 return (graph = nothing, edges = 0) end
if jc.node_label_field != "id"
nodes = innerjoin(select(jc.nodes, :id, jc.node_label_field), nodes, on=:id => :_label)
rename!(nodes, jc.node_label_field => "label")
else
rename!(nodes, :_label => "label")
end
graph = nothing
if jc.is_directed && jc.edge_weighted
graph = SimpleWeightedDiGraph(sub_network.from, sub_network.to, sub_network.weight)
elseif jc.is_directed
graph = SimpleDiGraph(community_size)
for i in 1:nrow(sub_network) add_edge!(graph, sub_network.from[i], sub_network.to[i]) end
elseif jc.edge_weighted
graph = SimpleWeightedGraph(sub_network.from, sub_network.to, sub_network.weight)
else
graph = SimpleGraph(community_size)
for i in 1:nrow(sub_network) add_edge!(graph, sub_network.from[i], sub_network.to[i]) end
end
if to_save_data
CSV.write("data/graph_network_$(jc.method)-$(jc.γ)$(jc.task_series)-$c.csv", sub_network)
if jc.node_weighted CSV.write("data/graph_nodes_$(jc.method)-$(jc.γ)$(jc.task_series)-$c.csv", nodes) end
end
if jc.node_weighted
(graph = graph, node_labels = nodes.label, network = sub_network, community_size = community_size, node_weights = nodes.importance)
else
(graph = graph, node_labels = nodes.label, network = sub_network, community_size = community_size)
end
end
function plot_community(jc::JuliaCommunityInstance, c::Int; fig_path::String="fig", to_save_data::Bool=true, mute::Bool=false, node_size_smoother::Float64=0.5, edge_width_smoother::Float64=0.5, line_type="straight", arrow_length_frac::Float64=0.012, arrow_angle::Float64=π / 18)
if !mute print("\n\nPlotting the community $c......\n\t") end
community_graph = build_community_graph(jc, c, to_save_data=to_save_data, mute=mute)
if isnothing(community_graph) return end
g = community_graph.graph
if isnothing(g) return end
labels = community_graph.node_labels
nodesize = jc.node_weighted ? community_graph.node_weights.^node_size_smoother : fill(1, nv(g))
# labels[findall(size -> size < ceil(community.edges / 100), nodesize)] .= ""
# nodesize = log.(nodesize .+ 1)
# edge_weights = log.(community.network[:co_f] .+ 1)
# edge_weights = community_graph.network[:weight].^0.72
edge_weight = jc.edge_weighted ? community_graph.network.weight.^edge_width_smoother : fill(1, ne(g))
# g = Graph(adjacency_matrix(g))
node_colorss = ["orange", "purple", "turquoise", "green", "red", "blue", "violet", "olive", "tan", "magenta", "cyan", "pink", "gold"]
edge_colors = ["navajowhite3", "coral2", "orange3", "yellow3", "yellowgreen", "turquoise", "lightskyblue", "mediumpurple1", "hotpink2", "tan3", "grey64"]
shuffle!(node_colorss)
# node_colors = colors[1 .+ Int.((length(colors) - 1) .* ceil.((nodesize .- minimum(nodesize)) ./ (maximum(nodesize) - minimum(nodesize))))]
# edge_colors = colors[1 .+ Int.((length(colors) - 1) .* ceil.((weights .- minimum(weights)) ./ (maximum(weights) - minimum(weights))))]
#= ========================================================================
Further partition the target community and render each sub partition with a same color
======================================================================== =#
network = community_graph.network
igraph = nothing
if jc.is_directed && jc.edge_weighted
igraph = ig.Graph(zip(network.from .- 1, network.to .- 1), directed=true, edge_attrs=Dict("weight" => network.weight))
elseif jc.is_directed
igraph = ig.Graph(zip(network.from .- 1, network.to .- 1), directed=true)
elseif jc.edge_weighted
igraph = ig.Graph(zip(network.from .- 1, network.to .- 1), directed=false, edge_attrs=Dict("weight" => network.weight))
else
igraph = ig.Graph(zip(network.from .- 1, network.to .- 1), directed=false)
end
categories = leiden.find_partition(igraph, leiden.ModularityVertexPartition)
# categories = leiden.find_partition(igraph, leiden.CPMVertexPartition, resolution_parameter= 1 / nv(g))
node_colors = node_colorss[(categories.membership .+ 1) .% length(node_colorss) .+ 1]
# layout = (args...) -> spring_layout(args...; C = 12) # where C influences the desired distance between nodes.
run_label = "$(jc.method)-$(jc.γ)$(jc.task_series)"
plot = nothing
if jc.is_directed
plot = gplot(g, nodesize=nodesize, nodelabel=labels,
nodelabeldist=0.2, nodelabelangleoffset=π / 4,
nodelabelsize=nodesize, edgelinewidth=edge_weight,
nodefillc=node_colors,
nodelabelc=node_colors,
linetype=line_type,
edgestrokec=edge_colors[rand(1:length(edge_colors))], arrowlengthfrac=arrow_length_frac, arrowangleoffset=arrow_angle
);
# or linetype = "curve" or "straight"
# edgestrokec = edge_colors,
# edgestrokec=colors[rand(1:length(colors), 1)[1]]
else
plot = gplot(g, nodesize=nodesize, nodelabel=labels,
nodelabeldist=0.2, nodelabelangleoffset=π / 4,
nodelabelsize=nodesize, edgelinewidth=edge_weight,
nodefillc=node_colors,
nodelabelc=node_colors,
linetype=line_type,
edgestrokec=edge_colors[rand(1:length(edge_colors))]);
end
save_path = "$fig_path/community-$run_label"
if !ispath(save_path) mkpath(save_path) end
draw(SVG("$save_path/$c.svg", 20cm, 16cm), plot);
end
function compute_cluster_coef(jc::JuliaCommunityInstance)
print("\nComputing the clustering coefficients for the partitioned communities......\n\t")
# If multiple threads are used to speed the caculation, then we have to bind the thread id with the corresponding index of the array.
cluster_cofs = zeros(jc.n_community)
Threads.@threads for c in 1:jc.n_community
community = build_community_graph(jc, c, to_save_data=false, mute=true)
g = community.graph
if isnothing(g)
cluster_cofs[c] = community.edges
else
cluster_cofs[c] = global_clustering_coefficient(g)
end
end
insertcols!(jc.communities, :cluster_cof => cluster_cofs)
avg_cluster_cof = mean(cluster_cofs)
print("\tThe total clustering coefficient of the network all the communities is $(global_clustering_coefficient(jc.graph)); The average clustering coefficient for all the communities is $avg_cluster_cof.")
end
function open_file(filename)
if Sys.isapple()
run(`open $(filename)`)
elseif Sys.islinux() || Sys.isbsd()
run(`xdg-open $(filename)`)
elseif Sys.iswindows()
run(`$(ENV["COMSPEC"]) /c start $(filename)`)
else
@warn "Showing plots is not supported on OS $(string(Sys.KERNEL))"
end
end
end