Skip to content

Latest commit

 

History

History
executable file
·
202 lines (178 loc) · 7.6 KB

README.md

File metadata and controls

executable file
·
202 lines (178 loc) · 7.6 KB

Movie Recommendation System

Movie Rating with Collaborative Filtering. Featuring two ways of implementation - Python + PySpark' & 'Scala + Spark

Environment: Docker setup

First, download docker image, For scala, we use official CDH 5.7 docker image which is latest at the moment

docker pull cloudera/quickstart:latest

For python, WE use Customized cloudera/quickstart image: upgrade python to 2.7.11 (CDH 5.7 has python 2.6 which could be problematic for using libs such as numpy)

docker pull /movierating:v1

Step 2, start docker vm

docker-machine start default
eval "$(docker-machine env default)"

Step 3, start docker scala:

docker run --hostname=quickstart.cloudera --privileged=true -t -i -p 18888:18888 -p 10080:10080 -p 17180:17180 -p 7180:7180 -p 4040:4040 -p 8888:8888 -p 80:80 -m 8192m -v /Users/joshua/Ideas:/repo cloudera/quickstart /usr/bin/docker-quickstart --name=cdh

python:

docker run --hostname=quickstart.cloudera --privileged=true -t -i -p 18888:18888 -p 10080:10080 -p 17180:17180 -p 7180:7180 -p 4040:4040 -p 8888:8888 -p 80:80 -m 8192m -v /Users/joshua/Ideas:/repo joshua/movierating:v1 /usr/bin/docker-quickstart --name=cdh

Step 4: on docker terminal, start CDH services

/home/cloudera/cloudera-manager --express --force

connect to Cloudera manager on http://192.168.99.100:7180/

[root@quickstart /]# sudo -u hdfs hadoop fs -chmod 777 /user/spark
[root@quickstart /]# sudo -u spark hadoop fs -chmod 777 /user/spark/applicationHistory

On Cloudera Manager, start services in the order below: HDFS Hive YARN Spark

For Bad health: Clock Offset problem, disable the warning: Cloudera Manager → Configuration Host Clock Offset Thresholds 「Warning」「Critical」→「Never 「Save Changes」

Python + PySpark implementation

Files

DataDownload.py download data from movielens website and store the data at the local file system MovieRating.py load the file in the HDFS file system and build the latent factor CF model recommenderSystem.py make recommendations to the new user

Steps to run the program

  • First step
spark-submit --driver-memory 4g DataDownload.py

The movielens data will be downloaded to the local file system (in a new folder "./datasets")

  • Second step
hadoop fs -put datasets
hadoop fs -mkdir models
hadoop fs -mkdir checkpoint

Put the local folder "./datasets" into the HDFS; make a new folder in HDFS to store the final model trained; checkpoint is used to avoid stackover flow

  • Third step
spark-submit --driver-memory 4g MovieRating.py

Note the size of driver memory can be further increased depending on the OS memory size Train the model; choose the parameters according the results on validation set; result is as below result

Scala + Spark implementation

MovieRater.scala trains mode, evaluates and selects best model based on user ratings. Further more, recommend movies to user based existing rating records from user.

Prerequisitives:

  • Cloudera Quickstart 5.7 docker
  • scala 2.10
  • maven
  • wget

Run

  • First step
wget http://files.grouplens.org/datasets/movielens/ml-latest-small.zip
unzip ml-latest-small.zip
wget http://files.grouplens.org/datasets/movielens/ml-latest.zip
unzip ml-latest.zip

The movielens data will be downloaded to the current dir and unzipped into separate folders

  • Second step
hadoop fs -mkdir -p /tmp/mydata/movielens/small/
hadoop fs -copyFromLocal  ml-latest-small/*.csv /tmp/mydata/movielens/small/
hadoop fs -mkdir -p /tmp/mydata/movielens/user-profile
hadoop fs -copyFromLocal /repo/bt-hollywood/src/main/resources/user-profile/batch*.csv /tmp/mydata/movielens/user-profile/
hadoop fs -mkdir -p /tmp/mydata/movielens/big/
hadoop fs -copyFromLocal  ml-latest/ratings.csv /tmp/mydata/movielens/big/

Make new folders in HDFS and copy ratings.csv over

  • Third step
    • run on small dataset :
spark-submit --master yarn-client --class io.bittiger.movierating.hollywood.MovieRater hollywood-1.0-SNAPSHOT-jar-with-dependencies.jar  /tmp/mydata/movielens/small/ratings.csv /tmp/mydata/movielens/small/movies.csv /tmp/mydata/movielens/user-profile/batch_1.csv 997
  • run on large dataset :
spark-submit --master yarn-client --class io.bittiger.movierating.hollywood.MovieRater hollywood-1.0-SNAPSHOT-jar-with-dependencies.jar  /tmp/mydata/movielens/big/ratings.csv /tmp/mydata/movielens/small/movies.csv /tmp/mydata/movielens/user-profile/batch_2.csv 999

Result example

Got 22884377 ratings from 247753 users on 33670 movies.
Training: 13729614, validation: 4580902, test: 4573861
RMSE (validation) = 0.8258453994610284 for the model trained with rank = 8, lambda = 0.1, and numIter = 10.
RMSE (validation) = 0.8214951299457715 for the model trained with rank = 8, lambda = 0.1, and numIter = 20.
RMSE (validation) = 3.681021156174323 for the model trained with rank = 8, lambda = 10.0, and numIter = 10.
RMSE (validation) = 3.681021156174323 for the model trained with rank = 8, lambda = 10.0, and numIter = 20.
RMSE (validation) = 0.8205171634436613 for the model trained with rank = 12, lambda = 0.1, and numIter = 10.
RMSE (validation) = 0.818235041472173 for the model trained with rank = 12, lambda = 0.1, and numIter = 20.
RMSE (validation) = 3.681021156174323 for the model trained with rank = 12, lambda = 10.0, and numIter = 10.
RMSE (validation) = 3.681021156174323 for the model trained with rank = 12, lambda = 10.0, and numIter = 20.
The best model was trained with rank = 12 and lambda = 0.1, and numIter = 20, and its RMSE on the test set is 0.8185896948127657.
The best model improves the baseline by 77.77%.

============>>>> Movies recommended for User... <<<<=================
 1: 21 Up (1977)
 2: 12 Years a Slave (2013)
 3: Sympathy for Mr. Vengeance (Boksuneun naui geot) (2002)
 4: "Magic Flute
 5: Grand Illusion (La grande illusion) (1937)
 6: 28 Up (1985)
 7: Cold Fish (Tsumetai nettaigyo) (2010)
 8: Symbol (Shinboru) (2009)
 9: Never Sleep Again: The Elm Street Legacy (2010)
10: Cowboy Bebop (1998)
11: Dolls (2002)
12: Hud (1963)
13: Black Dynamite (2009)
14: "Education
15: House of Sand and Fog (2003)
16: Fireworks (Hana-bi) (1997)
17: "Old Man and the Sea
18: Joyeux Noël (Merry Christmas) (2005)
19: 35 Up (1991)
20: Red Road (2006)
21: "Queen of Versailles
22: Blue Jasmine (2013)
23: "Help
24: Garden State (2004)
25: Evil Dead II (Dead by Dawn) (1987)
26: "Apartment
27: Batman Beyond: Return of the Joker (2000)
28: "OSS 117: Cairo
29: Fist of Legend (Jing wu ying xiong) (1994)
30: Schizopolis (1996)
31: Land and Freedom (Tierra y libertad) (1995)
32: Holy Motors (2012)
33: Wallace & Gromit: The Best of Aardman Animation (1996)
34: Kids Return (Kizzu ritân) (1996)
35: Getting Any? (Minnâ-yatteruka!) (1994)
36: Adrift in Tokyo (Tenten) (2007)
37: Achilles and the Tortoise (Akiresu to kame) (2008)
38: Crawlspace (1986)
39: "Killer Inside Me
40: Starman (1984)
41: 2001: A Space Odyssey (1968)
42: "Dead Zone
43: D.A.R.Y.L. (1985)
44: My Favorite Year (1982)
45: Being There (1979)
46: Koyaanisqatsi (a.k.a. Koyaanisqatsi: Life Out of Balance) (1983)
47: "Wicker Man
48: Stardust Memories (1980)
49: Of Mice and Men (1992)
50: Batman: Mask of the Phantasm (1993)

Reference