-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathapp.py
57 lines (47 loc) · 2.02 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from flask import Flask, request, jsonify, render_template, url_for
import torch
import pickle
from vqa_model import VQAModel
import urllib.request
app = Flask(__name__)
# Loading the fitted One Hot Encoders from the disk
with open('Saved_Models/answer_onehotencoder.pkl', 'rb') as f:
ANSWER_ONEHOTENCODER = pickle.load(f)
with open('Saved_Models/answer_type_onehotencoder.pkl', 'rb') as f:
ANSWER_TYPE_ONEHOTENCODER = pickle.load(f)
# Loading the model from the disk
DEVICE = torch.device("cpu")
MODEL_NAME = "ViT-L/14@336px"
NUM_CLASSES = 5410
MODEL_PATH = "Saved_Models/model.pth"
model = VQAModel(num_classes=NUM_CLASSES, device= DEVICE, hidden_size=512, model_name=MODEL_NAME).to(DEVICE)
model.load_model(MODEL_PATH)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
# Get the image and question from the request
image_url = request.form.get('image_url')
question = request.form.get('question')
if 'image' in request.files:
# The image is a file uploaded from a device
image = request.files['image']
image_path = 'templates/user_image.jpg'
image.save(image_path)
elif image_url:
# The image is a URL
image_path = 'templates/user_image.jpg'
urllib.request.urlretrieve(image_url, image_path)
else:
# No image was provided
return 'No image provided'
# Predict the answer and answer type
predicted_answer, predicted_answer_type, answerability = model.test_model(image_path = image_path, question = question)
answer = ANSWER_ONEHOTENCODER.inverse_transform(predicted_answer.cpu().detach().numpy())
answer_type = ANSWER_TYPE_ONEHOTENCODER.inverse_transform(predicted_answer_type.cpu().detach().numpy())
# Return the predicted answer and answer type as a JSON response
response = {'answer': answer[0][0], 'answer_type': answer_type[0][0], 'answerability': answerability.item()}
return jsonify(response)
if __name__ == '__main__':
app.run(debug=True)