-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvar.py
65 lines (54 loc) · 2.39 KB
/
var.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from typing import Union
import numpy as np
from jesse.helpers import get_candle_source, slice_candles
def var(candles: np.ndarray, length: int = 2, source_type="close", sequential=False) -> \
Union[float, np.ndarray]:
"""
:param candles: np.ndarray
:param length: int - default: 2
:param source_type: str - default: close
:param sequential: bool - default: False
:return: Union[float, np.ndarray]
"""
# VIDYA (Chande's Variable Index Dynamic Average) http://www.fxcorporate.com/help/MS/NOTFIFO/i_Vidya.html
# github.com/ysdede
# All the VIDYA values are calculated automatically.
# First of all, the CMO (Chande Momentum Oscillator) value is calculated using the following formula:
# CMOi = (UpSumi - DnSumi) / (UpSumi + DnSumi)
#
# where:
# UpSumi - is the sum of positive price increments of the current period.
# DnSumi - is the sum of negative price increments of the current period.
#
# This CMO value is then used to calculate the VIDYA indicator:
#
# VIDYAi = Pricei x F x ABS(CMOi) + VIDYAi-1 x (1 - F x ABS(CMOi))
#
# where:
# VIDYAi - is the value of the current period.
# Pricei - is the source price of the period being calculated.
# F = 2/(Period_EMA+1) - is a smoothing factor.
# ABS(CMOi) - is the absolute current value of CMO.
# VIDYAi-1 - is the value of the period immediately preceding the period being calculated.
if length < 1:
raise ValueError('Bad parameters.')
# Accept normal array too.
if len(candles.shape) == 1:
source = candles
else:
candles = slice_candles(candles, sequential)
source = get_candle_source(candles, source_type=source_type)
valpha = 2 / (length + 1)
change = np.diff(source, prepend=source[0])
vud1 = np.copy(change)
vdd1 = np.copy(change)
vud1 = np.where(vud1 >= 0, vud1, 0)
vdd1 = np.where(vdd1 >= 0, 0, -vdd1)
vUD = np.convolve(vud1, np.ones(9, dtype=int), 'valid')
vDD = np.convolve(vdd1, np.ones(9, dtype=int), 'valid')
chandeMO = np.abs(np.true_divide(np.subtract(vUD, vDD), np.add(vUD, vDD)))
chandeMO = np.pad(chandeMO, (source.size - chandeMO.size, 0), 'constant')
VAR = np.full_like(source, 0.0)
for i in range(length, VAR.size):
VAR[i] = (valpha * chandeMO[i] * source[i]) + (1 - valpha * chandeMO[i]) * VAR[i - 1]
return VAR if sequential else VAR[-1]