-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathE_field.py
420 lines (329 loc) · 14.6 KB
/
E_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import numpy as np
from input_data import CONST
#For more details regarding computation of fully normalized Associated Legendre polynomials and
#Spherical harmonics, refer to the article below:
#Limpanuparb, T. and Milthorpe, J., 2014.
#Associated Legendre Polynomials and Spherical Harmonics Computation for Chemistry Applications.
#arXiv preprint arXiv:1410.1748.
def computeP(L, A, B, x, y):
'''
Parameters
----------
L : integer
highest order of associated legendre polynomials.
A : float64 (array)
used in recurrence relations of legendre polynomials.
B : float64 (array)
used in recurrence relations of legendre polynomials.
x : float64 (scalar)
cosine of theta angle.
y : float64 (scalar)
sin of theta angle.
Returns
-------
P : normalized associated polynomials of size [L + 1, L + 1]
the values of normalized associated legendre of
degree lmax = L and order |mmax| = L for a particular angle theta.
'''
P = np.zeros((L + 1, L + 1), dtype=np.float64)
temp = 0.7071067811865475244008443621 #1/sqrt(2)
P[0, 0] = temp
if(L>0):
SQRT3DIV2 = 1.224744871391589049098642037353 #sqrt(3)/sqrt(2)
P[1, 0] = x*SQRT3DIV2
temp = -SQRT3DIV2*y*temp
P[1, 1]=temp
for l in range(2, L+1):
for m in range(0, l-1):
P[l, m] = A[l, m] * (x * P[l-1, m] + B[l, m] * P[l-2, m])
P[l, l-1] = x * np.sqrt(2.0 * (l-1) + 3.0) * temp
temp = -np.sqrt(1.0 + 0.5 / l) * y * temp
P[l, l]=temp
return P
#For more information regarding P/sin term, read
#Li, P. and Jiang, L.J., 2012.
#The far field transformation for the antenna modeling based on spherical electric field measurements.
#Progress In Electromagnetics Research, 123, pp.243-261.
def LegendreP(theta, N_max, source_theta=None):
'''
Parameters
----------
theta : float64 (array)
array of theta angles (radians) in spherical coordinate system.
N_max : integer
maximum order of associated legendre polynomials and derivatives.
source_theta : float64, optional
a single theta angle (radian) for which associated
legendre polynomials should be computed. the default is none.
Returns
-------
LegendreD[0 : N_max + 2, 0 : N_max + 2, 0 : len(theta) + 1] : float64 (array)
derivatives of normalized associated legendre polynomials for
all degrees and orders up to N_max (including) computed for all angles of theta.
LegendreS[0 : N_max + 2, 0 : N_max + 2, 0 : len(theta) + 1] : float64 (array)
legendre / sin(theta) term for all degrees and orders up to
N_max (including) computed for all angles of theta.
x[0 : len(theta) + 1] : float64 (array)
cos(theta) computed for all angles of theta.
y[0 : len(theta) + 1] : float64 (array)
sin(theta) computed for all angles of theta.
LegendreD1[0 : N_max + 2, 0 : N_max + 2] : float64 (array)
derivatives of normalized associated legendre polynomials for all
degrees and orders up to N_max (including) computed for a particular angle source_theta.
LegendreS1[0 : N_max + 2, 0 : N_max + 2] : float64 (array)
legendre / sin(theta) term for all degrees and orders
up to N_max (including) computed for a particular angle source_theta.
'''
NPTS = len(theta)
LL = N_max + 1
x = np.cos(theta)
y = np.sin(theta)
#Temporary arrays used in recursion
A = np.zeros((LL + 1, LL + 1), dtype=np.float64)
B = np.zeros((LL + 1, LL + 1), dtype=np.float64)
#Compute temporary arrays
for l in range(2, LL+1):
ls = l**2
lm1s = (l-1)**2
for m in range(0, l-1):
ms = m**2
A[l, m] = np.sqrt((4.0 * ls - 1.0) / (ls - ms))
B[l, m] = -np.sqrt((lm1s - ms) / (4.0 * lm1s - 1.0))
#Allocate space for Legendre polynomials
LegendreP = np.zeros((LL + 1, LL + 1, NPTS), dtype=np.float64) # [size=(L,M),Theta]
#Compute all Associated legendre functions on x-th grid
for i in range(0, NPTS):
LegendreP[:, :, i] = computeP(LL, A, B, x[i], y[i])
#Compute P/sin functions, general case:
LegendreS = np.zeros((LL + 1, LL + 1, NPTS), np.float64)
#consider asymptotic cases when theta = 0 or theta = pi
eps = 1e-14
mask1 = (abs(theta - 0.0) < eps)
mask2 = (abs(theta - np.pi) < eps)
#combine masks
mask = np.ma.mask_or(mask1, mask2)
#find location of asymptotes
asymptote = np.where(mask)[0]
#find location of regular points
regular = np.where(~mask)[0]
#evaluate function at regular points
LegendreS[:, :, regular] = LegendreP[:, :, regular] / y[regular]
#Consider special case for m=1 at theta=0:
m = 1
for n in range(1, LL + 1):
LegendreS[n, m ,asymptote[0]] = -0.5 * np.sqrt(n * (2.0 * n + 1.0) * (n + 1.0) / 2.0)
if(np.shape(asymptote)==(2,)): #include theta == pi case
for n in range(1, LL + 1):
LegendreS[n, m, asymptote[1]] = (-1) ** (n + 1) * LegendreS[n, m, asymptote[0]]
#Evaluate derivatives of normalized Associated Legendre polynomials using recurrence relation
LegendreD = np.zeros((LL, LL, NPTS), np.float64)
#Leg_deriv = 0 when m = 0, n = 0
for n in range(1, LL):
for m in range(0, n + 1): #include the case when n = m
LegendreD[n, m, :] = -(n + 1.0) * x[:] * LegendreS[n, m, :] + \
np.sqrt((2.0 * n + 1.0) * (n + m + 1.0) * \
(n - m + 1.0) / (2.0 * n + 3.0)) * LegendreS[n + 1, m, :]
#Compute for a single pointing if present
if(source_theta is not None):
LegendreD1 = np.zeros((LL, LL), dtype=np.float64)
LegendreS1 = np.zeros((LL + 1, LL + 1), dtype=np.float64)
#check if source_theta is a part of existing array:
if source_theta in theta:
#find the position of theta corresponding to source_theta (assuming all values of theta are unique)
pos = np.where(abs(theta - source_theta) < eps)
LegendreD1[:, :] = np.squeeze(LegendreD[:, :, pos])
LegendreS1[:, :] = np.squeeze(LegendreS[:, :, pos])
else: #compute legendre polynomial and sin term for this unique position
LegendreD1 = np.zeros((LL, LL), np.float64)
xs = np.cos(source_theta)
ys = np.sin(source_theta)
LegendreP1 = computeP(LL, A, B, xs, ys)
LegendreS1 = LegendreP1 / ys
for n in range(1, LL):
for m in range(0, n + 1):
LegendreD1[n, m] = -(n + 1) * xs * LegendreS1[n, m] + \
np.sqrt((2.0 * n + 1.0) * (n + m + 1.0) * \
(n - m + 1.0) / (2.0 * n + 3.0)) * LegendreS1[n + 1, m]
return LegendreD, LegendreS[0 : LL + 1, 0 : LL + 1], x, y, LegendreD1, LegendreS1
else:
return LegendreD, LegendreS[0 : LL + 1, 0 : LL + 1], x, y
#spherical modes used to re-construct electric fields
def extract_modes(h5f, Vcplx, freq):
'''
Parameters
----------
h5f : dictionary of float and integer arrays
file containing spherical modal coefficients and indexes of spherical
vector harmonics for a particular polarisation and frequency
Vcplx : complex128 (array)
array of complex beamformer coefficients corresponding to a particular
grid point specified in the input_data.py.
freq : float64 (singe number)
a single frequency point given in Hz.
Returns
-------
beam_modes : dictionary of complex128 and integer arrays
contains accumulated spherical modal coefficients scaled by
the values of complex beamformer coefficients.
N, M - integer arrays
combination of indexes required for reconstruction of spherical vector
harmonics
'''
beam_modes = {}
N_ANT = CONST.N_ANT
DEG2RAD = CONST.DEG2RAD
POL = CONST.POL
# finding maximum length of modes for this frequency
max_length = 0 # initialize
for ant_i in range(0, N_ANT):
# select spherical wave table
name = '%s%s_%s' % (POL, ant_i + 1, freq)
# find maximum length
if h5f[name].shape[1] // 2 > max_length:
max_length = h5f[name].shape[1] // 2
# accumulating spherical harmonics coefficients for the array
Q1_accum = np.zeros(max_length, dtype=np.complex128)
Q2_accum = np.zeros(max_length, dtype=np.complex128)
# Read in modes
Q_modes_all = h5f['modes'][()].T
Nmax = 0
M_accum = None
N_accum = None
for ant_i in range(0, N_ANT):
# re-initialise Q1 and Q2 for every antenna
Q1 = np.zeros(max_length, dtype=np.complex128)
Q2 = np.zeros(max_length, dtype=np.complex128)
# select spherical wave table
name = '%s%s_%s' % (POL, ant_i + 1, freq)
Q_all = h5f[name][()].T
# current length
my_len = np.max(Q_all.shape)
my_len_half = my_len // 2
Q_modes = Q_modes_all[0:my_len, :] # Get modes for this antenna
# convert Qall to M, N, Q1, Q2 vectors for processing
# find s=1 and s=2 indices for this antenna
s1 = Q_modes[0:my_len, 0] <= 1 #TE mode
s2 = Q_modes[0:my_len, 0] > 1 #TM mode
# grab m,n vectors
M = Q_modes[s1, 1]
N = Q_modes[s1, 2]
# update to the larger M and N
if np.max(N) > Nmax:
M_accum = M
N_accum = N
Nmax = np.max(N_accum)
# grab Q1mn and Q2mn and make them complex
Q1[0:my_len_half] = Q_all[s1, 0] * np.exp(1j * Q_all[s1, 1] * DEG2RAD)
Q2[0:my_len_half] = Q_all[s2, 0] * np.exp(1j * Q_all[s2, 1] * DEG2RAD)
# accumulate Q1 and Q2, scaled by excitation voltage
Q1_accum += Q1 * Vcplx[ant_i]
Q2_accum += Q2 * Vcplx[ant_i]
beam_modes = {'Q1': Q1_accum, 'Q2': Q2_accum, 'M': M_accum, 'N': N_accum}
return beam_modes
def construct_FF(phi, theta, leg_deriv, leg_sin, beam_modes):
'''
Parameters
----------
phi : float64 (array)
array of phi angles in spherical coordinate system.
theta : float64 (array)
array of theta angles in spherical coordinate system.
leg_deriv : float64 (array)
derivatives of normalised associated legendre polynomials.
leg_sin : float64 (array)
normalised associated legendre divided by sin(theta).
beam_modes : dictionary of complex128 and integer arrays
dictionary containing spherical modal coefficients scaled by
complex beamformer weights and indexes of spherical harmonics.
Returns
-------
E_Theta : float64 (array)
array of electric fields as a function of phi and theta in theta hat
direction.
E_Phi : float64 (array)
array of electric fields as a function of phi and theta in phi hat
direction.
'''
Theta_max = np.size(theta)
target = beam_modes
dim = len(target['N']) #dimension of summation
Q1 = target['Q1'] #extract i-th Q1 modal coefficient
Q2 = target['Q2'] #extract i-th Q2 modal coefficient
M = target['M'].astype(np.int64)
N = target['N'].astype(np.int64)
Ld = np.zeros((Theta_max, dim), dtype=np.float64) #Associated Legendre Polynomials
Ls = np.zeros((Theta_max, dim), dtype=np.float64) #Associated Legendre over sin term
#Arrays that will be used to search the index on Legendre polynomials
Ma = np.abs(M)
#sign_factor = (-M/|M|)^M. Note that at M=0, the limit -> 1, but the result is undefined if
#computed normally. Therefore, for M>0 invert sign for all odd values of M.
#For M<=0 the sign remains the same.
sign_factor = np.ones(dim, dtype=np.float64)
sign_factor[(M > 0) & (M % 2 != 0)] = -1.0
#outer product is required to evaluate exp(jm(phi)).
phase_factor = np.outer(phi, M) #size[phi_max,dim]
#this is 1/sqrt(n*(n+1)) * (1j)^(N) * {(-M/|M|)^(M)} * exp(jm(phi))
phi_factor = np.power(1j, N) * sign_factor / np.sqrt(N*(N+1.0)) * np.exp(1j * phase_factor)
#Map functions to correct values
for i in range(0, dim):
ni = N[i]
mi = Ma[i]
Ld[:, i] = leg_deriv[ni, mi, :]
Ls[:, i] = leg_sin[ni, mi, :]
e_th = (Ld*Q2-M*Q1*Ls)
e_ph = (M*Q2*Ls-Ld*Q1)*1j
E_Theta = np.inner(phi_factor, e_th) * CONST.SQRT_FAC
E_Phi = np.inner(phi_factor, e_ph) * CONST.SQRT_FAC
return E_Theta, E_Phi
# ================================================================================================================
def construct_FF1(phi1, theta1, leg_deriv, leg_sin, beam_modes):
'''
Parameters
----------
phi1 : float64
a single phi pointing angle in spherical coordinate system.
theta1 : float64
a single theta pointing angle in spherical coordinate system.
leg_deriv : float64 (array)
derivatives of normalised associated legendre polynomials.
leg_sin : float64 (array)
normalised associated legendre divided by sin(theta).
beam_modes : dictionary of complex128 and integer arrays
dictionary containing spherical modal coefficients scaled by
complex beamformer weights and indexes of spherical harmonics.
Returns
-------
E_Theta : float64
value of the electric field corresponding
to (phi1, theta1) in theta hat direction.
E_Phi : float64
value of the electric field corresponding
to (phi1, theta1) in phi hat direction.
'''
target = beam_modes
dim = len(target['N']) #dimension of summation
Ld = np.zeros((dim), dtype=np.float64) #Associated Legendre Polynomials
Ls = np.zeros((dim), dtype=np.float64) #Associated Legendre over sin term
M = target['M'].astype(np.int64)
N = target['N'].astype(np.int64)
Q1 = target['Q1'] #extract i-th Q1 modal coefficient
Q2 = target['Q2'] #extract i-th Q2 modal coefficient
Ma = np.abs(M)
#sign_factor = (-M/|M|)^M. Note that at M=0, the limit -> 1, but the result is undefined if
#computed normally. Therefore, for M>0 invert sign for all odd values of M.
#For M<=0 the sign remains the same.
sign_factor = np.ones(dim, dtype=np.float64)
sign_factor[(M > 0) & (M % 2 != 0)] = -1.0
#this is 1/sqrt(n*(n+1)) * (1j)^(N) * {(-M/|M|)^(M)} * exp(jm(phi))
phi_factor = np.power(1j, N) * sign_factor / np.sqrt(N*(N+1.0)) * np.exp(1j * phi1 * M)
#Map functions to correct values
for i in range(0, dim):
ni = N[i]
mi = Ma[i]
Ld[i] = leg_deriv[ni, mi]
Ls[i] = leg_sin[ni, mi]
e_th = (Ld*Q2-M*Q1*Ls)
e_ph = (M*Q2*Ls-Ld*Q1)*1j
E_Theta = np.sum(e_th*phi_factor)*CONST.SQRT_FAC
E_Phi = np.sum(e_ph*phi_factor)*CONST.SQRT_FAC
return E_Theta, E_Phi