forked from WenliangGuo/SCHEMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_uncertain.py
389 lines (325 loc) · 15.8 KB
/
eval_uncertain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import torch
import os
import numpy as np
from utils import *
from metrics import *
from torch.utils.data import DataLoader
from models.procedure_model import ProcedureModel
from models.utils import AverageMeter
from models.utils import viterbi_path
from tools.parser import create_parser
# Implementation based on https://github.dev/MCG-NJU/PDPP
def cal_uncertainty(actions_pred_logits, gt, num_sampling, horizon, act_size, all_ref):
actions_pred = torch.argmax(actions_pred_logits, dim=-1)
actions_pred = actions_pred.view(num_sampling, -1)
sample_listing = actions_pred
bz = all_ref.shape[0]
gt_sample = np.repeat(gt.cpu().numpy(), bz, axis=0)
criter = (
(gt_sample[:, [0, -1]] == all_ref[:, [0, -1]])
.all(axis=1)
.nonzero()[0]
)
dist_samples = all_ref[criter]
len_unique = len(np.unique(dist_samples, axis=0))
ref_onehot = torch.FloatTensor(horizon, act_size).cuda()
ref_onehot.zero_()
######################################################################
# dist_samples represents the samples in the test-set: #
# 1). Share the same start and end-goal semantic; #
# #
# If can not find any dist_samples (aka dist_samples.shape[0] == 0): #
# 1). Skip the nll evaluation (see below code) #
######################################################################
if dist_samples.shape[0] != 0:
for vec in dist_samples:
vec = torch.from_numpy(vec).cuda()
ref_onehot_tmp = torch.FloatTensor(
horizon, act_size
).cuda()
ref_onehot_tmp.zero_()
ref_onehot_tmp.scatter_(
1, vec.view(horizon, -1), 1)
ref_onehot += ref_onehot_tmp
ref_dist = ref_onehot
itm_onehot = torch.FloatTensor(horizon, act_size).cuda()
itm_onehot.zero_()
for itm in sample_listing:
###########################################
# Convert indivisual sample into onehot() #
###########################################
itm_onehot_tmp = torch.FloatTensor(horizon, act_size).cuda()
itm_onehot_tmp.zero_()
itm_onehot_tmp.scatter_(
1, itm.cuda().view(horizon, -1), 1)
itm_onehot += itm_onehot_tmp
###########################################
# Evaluate on Mode-Coverage Prec & Recall #
###########################################
ratio_list = []
for sample in sample_listing:
ratio_list.append(
(sample.squeeze().cpu().numpy() == dist_samples).all(1).any()
)
ratio = sum(ratio_list) / num_sampling
mc_prec = ratio
# all_samples = torch.stack(
# sample_listing).squeeze().cpu().numpy()
all_samples = sample_listing.cpu().numpy()
# dist_samples_unique = np.unique(dist_samples, axis=0)
dist_samples_unique = dist_samples
num_expert = dist_samples_unique.shape[0]
list_expert = np.array_split(dist_samples_unique, num_expert)
tmp_recall = []
for item in list_expert:
tmp_recall.append((item == all_samples).all(1).any())
mc_recall = sum(tmp_recall) / len(tmp_recall)
####################################
# Calculate the KL-Div Metric #
####################################
ref_dist /= dist_samples.shape[0]
itm_onehot /= num_sampling
ref_dist *= 10
itm_onehot *= 10
ref_dist = ref_dist.softmax(dim=-1)
itm_onehot = itm_onehot.softmax(dim=-1)
klv_rst = (
torch.nn.functional.kl_div(
itm_onehot.log(),
ref_dist,
reduction='batchmean'
)
.cpu()
.numpy()
)
klv_rst = np.where(np.isnan(klv_rst), 0, klv_rst)
klv_rst = np.where(np.isinf(klv_rst), 0, klv_rst)
klv = klv_rst
####################################
# Calculate the NLL Metric #
####################################
klv_rst2 = (
torch.mean(-torch.sum(ref_dist * itm_onehot.log(), 1)).cpu().numpy()
)
klv_rst2 = np.where(np.isnan(klv_rst2), 0, klv_rst2)
klv_rst2 = np.where(np.isinf(klv_rst2), 0, klv_rst2)
nll = klv_rst2
return len_unique, mc_prec, mc_recall, klv, nll
# Implementation based on https://github.dev/JoeHEZHAO/procedure-planing
def cal_viterbi(rst_argmax, act_size, pred_horz, num_sampling, transition_matrix):
# """Formulate distribution from these samples, for viterbi results """
ref_onehot = torch.FloatTensor(pred_horz, act_size).cuda()
ref_onehot.zero_()
"""Make this run in parallel"""
ref_onehot_tmp = torch.FloatTensor(rst_argmax.shape[0],
pred_horz,
act_size).cuda().zero_() # [num_sample, T, num_act]
ref_onehot_tmp.scatter_(2, rst_argmax.view(rst_argmax.shape[0], pred_horz, -1), 1)
ref_onehot = ref_onehot_tmp.sum(0)
"Normalize with total number of samples"
new_logits = ref_onehot / num_sampling
#################
# Run Viterbi #
#################
viterbi_rst = viterbi_path(
transition_matrix,
new_logits.permute(1, 0).cpu().numpy()
)
return viterbi_rst
def eval(
args,
data_loader,
model,
logger,
state_prompt_features,
transition_matrix,
e=0,
device=torch.device("cuda"),
writer=None,
is_train=False
):
# metrics for action
action_acc1 = AverageMeter()
action_acc5 = AverageMeter()
action_sr = AverageMeter()
action_miou = AverageMeter()
# metrics for uncertainty
uncertain_len_unique = AverageMeter()
uncertain_mc_prec = AverageMeter()
uncertain_mc_recall = AverageMeter()
uncertain_kl = AverageMeter()
uncertain_nll = AverageMeter()
# metrics for viterbi
viterbi_sr = AverageMeter()
viterbi_acc1 = AverageMeter()
viterbi_miou = AverageMeter()
reference = []
for i, (batch_states, batch_actions, batch_tasks) in enumerate(data_loader):
reference.append(batch_actions.cpu().numpy())
all_ref = np.concatenate(reference, axis=0) # [num_valid, time_horizon]
with torch.no_grad():
for i, (batch_states, batch_actions, batch_tasks) in enumerate(data_loader):
'''
batch_states: (bs, time_horizon, 2, embedding_dim)
batch_actions: (bs, time_horizon)
batch_tasks: (bs)
'''
temp_outputs = {"action": [], "viterbi": []}
temp_labels = {"action": [], "viterbi": []}
for j in range(batch_states.shape[0]):
batch_size, _ = batch_actions.shape
input_states = batch_states[j:j+1].repeat(args.num_sample, 1, 1, 1).to(device) # [num_sample, time_horizon, 2, embed_dim]
input_actions = batch_actions[j].unsqueeze(0).repeat(args.num_sample, 1).to(device) # [num_sample, time_horizon]
input_tasks = batch_tasks[j].repeat(args.num_sample).to(device) # [num_sample]
outputs, labels, losses = model(
visual_features = input_states,
state_prompt_features = state_prompt_features,
actions = input_actions,
tasks = input_tasks,
transition_matrix = transition_matrix
)
action_logits = outputs["action"].reshape(-1, args.max_traj_len, args.num_action) # [num_sample, time_horizon, num_action]
pred_action = action_logits.argmax(-1) # [num_sample, time_horizon]
temp_outputs["action"].append(pred_action[0])
temp_labels["action"].append(batch_actions[j])
## Viterbi decoding
viterbi_rst = cal_viterbi(pred_action, args.num_action, args.max_traj_len, args.num_sample, transition_matrix)
temp_outputs["viterbi"].append(torch.from_numpy(viterbi_rst).cuda())
temp_labels["viterbi"].append(batch_actions[j])
## Uncertainty metrics
len_unique, mc_prec, mc_recall, klv, nll = \
cal_uncertainty(action_logits,
batch_actions[j].unsqueeze(0),
args.num_sample,
args.max_traj_len,
args.num_action,
all_ref)
uncertain_len_unique.update(len_unique)
uncertain_mc_prec.update(mc_prec)
uncertain_mc_recall.update(mc_recall)
uncertain_kl.update(klv)
uncertain_nll.update(nll)
## action metrics
temp_outputs["action"] = torch.stack(temp_outputs["action"], dim=0).cpu().numpy() # [bs, time_horizon]
temp_labels["action"] = torch.stack(temp_labels["action"], dim=0).cpu().numpy() # [bs, time_horizon]
sr = success_rate(temp_outputs["action"], temp_labels["action"], True)
miou = acc_iou(temp_outputs["action"], temp_labels["action"], False).mean()
acc = mean_category_acc(temp_outputs["action"], temp_labels["action"])
action_acc1.update(acc, batch_size)
action_sr.update(sr, batch_size)
action_miou.update(miou, batch_size)
# viterbi decoding metrics
viterbi_pred = torch.stack(temp_outputs["viterbi"], dim=0).cpu().numpy()
labels_viterbi = torch.stack(temp_labels["viterbi"], dim=0).cpu().numpy() # [bs, time_horizon]
sr_viterbi = success_rate(viterbi_pred, labels_viterbi, True)
miou_viterbi = acc_iou(viterbi_pred, labels_viterbi, False).mean()
acc_viterbi = mean_category_acc(viterbi_pred, labels_viterbi)
viterbi_sr.update(sr_viterbi, batch_size)
viterbi_acc1.update(acc_viterbi, batch_size)
viterbi_miou.update(miou_viterbi, batch_size)
logger.info("\tAction, SR: {:.2f}% Acc: {:.2f}% MIoU: {:.2f}"\
.format(action_sr.avg,
action_acc1.avg,
action_miou.avg))
logger.info("\tViterbi, SR: {:.2f}% Acc: {:.2f}% MIoU: {:.2f}"\
.format(viterbi_sr.avg,
viterbi_acc1.avg,
viterbi_miou.avg))
logger.info("\tUncertainty, Len_unique: {:.2f} MC_prec: {:.2f} MC_recall: {:.2f} KL: {:.2f} NLL: {:.2f}"\
.format(uncertain_len_unique.avg,
uncertain_mc_prec.avg*100,
uncertain_mc_recall.avg*100,
uncertain_kl.avg,
uncertain_nll.avg))
def main_worker(args):
log_file_path = os.path.join(args.saved_path, f"uncertain_{args.dataset}", f"T{args.max_traj_len}_log_eval.txt")
logger = get_logger(log_file_path)
logger.info("{}".format(log_file_path))
logger.info("{}".format(args))
setup_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.dataset == 'crosstask':
logger.info("Loading prompt features...")
state_prompt_features = np.load(f'./data/state_description_features/crosstask_state_prompt_features.npy')
## parse raw data
task_info_path = os.path.join(args.root_dir, "tasks_primary.txt")
task_info = parse_task_info(task_info_path)
with open("data/crosstask_idices.json", "r") as f:
idices_mapping = json.load(f)
anot_dir = os.path.join(args.root_dir, "annotations")
anot_info = parse_annotation(anot_dir, task_info, idices_mapping)
logger.info("Loading training data...")
train_dataset = ProcedureDataset(anot_info, args.features_dir, state_prompt_features,
args.train_json, args.max_traj_len, aug_range=args.aug_range,
mode = "train", M=args.M)
logger.info("Loading valid data...")
valid_dataset = ProcedureDataset(anot_info, args.features_dir, state_prompt_features,
args.valid_json, args.max_traj_len, aug_range=args.aug_range,
mode = "valid", M=args.M)
transition_matrix = train_dataset.transition_matrix
elif args.dataset == "coin":
logger.info("Loading prompt features...")
state_prompt_features = np.load(f'./data/state_description_features/coin_state_prompt_features.npy')
logger.info("Loading training data...")
train_dataset = ProcedureDataset(args.features_dir, state_prompt_features,
args.train_json, args.max_traj_len, aug_range=args.aug_range,
mode = "train", M=args.M)
logger.info("Loading valid data...")
valid_dataset = ProcedureDataset(args.features_dir, state_prompt_features,
args.valid_json, args.max_traj_len, aug_range=args.aug_range,
mode = "valid", M=args.M)
transition_matrix = train_dataset.transition_matrix
elif args.dataset == "niv":
logger.info("Loading prompt features...")
state_prompt_features = np.load(f'./data/state_description_features/niv_state_prompt_features.npy')
logger.info("Loading training data...")
train_dataset = ProcedureDataset(args.features_dir, state_prompt_features,
args.train_json, args.max_traj_len, num_action = 48,
aug_range=args.aug_range, mode = "train", M=args.M)
logger.info("Loading valid data...")
valid_dataset = ProcedureDataset(args.features_dir, state_prompt_features,
args.valid_json, args.max_traj_len, num_action = 48,
aug_range=args.aug_range, mode = "valid", M=args.M)
transition_matrix = train_dataset.transition_matrix
valid_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)
logger.info("Training set volumn: {} Testing set volumn: {}".format(len(train_dataset), len(valid_dataset)))
model = ProcedureModel(
vis_input_dim=args.img_input_dim,
lang_input_dim=args.text_input_dim,
embed_dim=args.embed_dim,
time_horz=args.max_traj_len,
num_classes=args.num_action,
num_tasks=args.num_tasks,
args=args
).to(device)
model_path = os.path.join(args.saved_path, f"uncertain_{args.dataset}", f"T{args.max_traj_len}_model_best.pth")
model.load_state_dict(torch.load(model_path))
model.eval()
state_prompt_features = torch.tensor(state_prompt_features).to(device, dtype=torch.float32).clone().detach()
eval(
args,
valid_loader,
model,
logger,
state_prompt_features,
transition_matrix,
-1,
device
)
if __name__ == "__main__":
args = create_parser()
if args.dataset == 'crosstask':
if args.split == 'base':
from dataset.crosstask_dataloader import CrossTaskDataset as ProcedureDataset
elif args.split == 'pdpp':
# use PDPP data split and data sample
from dataset.crosstask_dataloader_pdpp import CrossTaskDataset as ProcedureDataset
elif args.split == 'p3iv':
# use P3IV data split and data sample
assert args.max_traj_len == 3, "Only the datasplit for max_traj_len = 3 is available."
from dataset.crosstask_dataloader_p3iv import CrossTaskDataset as ProcedureDataset
elif args.dataset == 'coin':
from dataset.coin_dataloader import CoinDataset as ProcedureDataset
elif args.dataset == 'niv':
from dataset.niv_dataloader import NivDataset as ProcedureDataset
main_worker(args)