-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
344 lines (279 loc) · 14.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import os
import json
import logging
import argparse
from datetime import datetime
import torch
from torch import nn, optim
from tqdm.auto import tqdm, trange
from matplotlib import pyplot as plt
from lib.nets import Generator, Discriminator, Denormalize, convert_model
from lib.fid import FID
from lib.utils import *
from lib.plots import plot_images
def train_epoch(net_g, net_d, opt_g, opt_d, dataloader, criterion,
z_dim, device, log, double_step=False):
losses_g = []
losses_d = []
total = len(dataloader)
total_char_len = len(str(total))
batch_format = lambda batch: f"[{batch:{total_char_len}d}/{total}] "
log_interval = total // 10
net_g.train()
net_d.train()
for batch, images in enumerate(tqdm(dataloader, desc="Batch", ncols=70, leave=False)):
batch_size = images.size(0)
real_label = torch.ones(batch_size, device=device)
fake_label = torch.zeros(batch_size, device=device)
real_images = images.to(device)
noise = torch.randn(batch_size, z_dim, device=device)
fake_images = net_g(noise)
# Update Discriminator network: maximize log(D(x)) + log(1 - D(G(z)))
real_output = net_d(real_images)
fake_output = net_d(fake_images.detach())
loss_d_real = criterion(real_output, real_label)
loss_d_fake = criterion(fake_output, fake_label)
loss_d = loss_d_real + loss_d_fake
losses_d.append((loss_d.item(), batch_size))
net_d.zero_grad()
loss_d.backward()
opt_d.step()
# Update Generator network: maximize log(D(G(z)))
fake_output1 = net_d(fake_images)
loss_g1 = criterion(fake_output1, real_label)
net_g.zero_grad()
loss_g1.backward()
opt_g.step()
if double_step:
fake_images2 = net_g(noise)
fake_output2 = net_d(fake_images2)
loss_g2 = criterion(fake_output2, real_label)
net_g.zero_grad()
loss_g2.backward()
opt_g.step()
# Statistics
loss_g = (loss_g1 + loss_g2) / 2
d_x = real_output.mean().item()
d_g_z1 = fake_output1.mean().item()
d_g_z2 = fake_output2.mean().item()
else:
# Statistics
loss_g = loss_g1
d_x = real_output.mean().item()
d_g_z1 = fake_output.mean().item()
d_g_z2 = fake_output1.mean().item()
losses_g.append((loss_g, batch_size))
# Logging
if batch % log_interval == 0:
log(batch_format(batch) +
f"Loss D: {loss_d.item():.4f} Loss G: {loss_g.item():.4f} "
f"D(x): {d_x:.4f} D(G(z)): {d_g_z1:.4f} / {d_g_z2:.4f}")
return losses_g, losses_d
def main(args, logger):
base_path = f"./out/{args.train_name}"
# Set device
if torch.cuda.is_available() and args.num_gpu > 0:
device = torch.device("cuda")
else:
device = torch.device("cpu")
logger.info(f"Device: {device}")
# Load dataset
num_channels = 3
dataloader = get_celeba_dataloader(
image_size=args.image_size, batch_size=args.batch_size,
num_workers=args.num_workers, train=True, shuffle=True,
)
test_dataloader = get_celeba_dataloader(
image_size=args.image_size, batch_size=args.num_test,
num_workers=0, train=False, shuffle=True,
)
test_iter = iter(test_dataloader)
logger.debug("Dataset loaded")
# Save sample images
if not args.resume:
images = next(iter(dataloader))[:64]
fig = plot_images(images)
fig.savefig(f"{base_path}/sample_images.png")
plt.close(fig)
logger.debug(f"Save sample images to '{base_path}/sample_images.png'")
# Model
denormalize = Denormalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)).to(device)
net_g = Generator(args.z_dim, args.num_features_generator, num_channels)
net_g = convert_model(net_g, device, args.num_gpu)
logger.debug(format_block(net_g))
net_d = Discriminator(args.num_features_discriminator, num_channels)
net_d = convert_model(net_d, device, args.num_gpu)
logger.debug(format_block(net_d))
fid_model = FID(dims=args.inception_dim).to(device)
# Loss and optimizer
criterion = nn.BCELoss()
opt_g = optim.Adam(net_g.parameters(), lr=args.lr_generator, betas=(args.beta1, 0.999))
opt_d = optim.Adam(net_d.parameters(), lr=args.lr_discriminator, betas=(args.beta1, 0.999))
fixed_noise = torch.randn(64, args.z_dim, device=device)
if args.resume:
# find the folder with the highest epoch number
folders = [f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f))]
max_epoch = sorted(folders)[-1]
logger.info(f"Resume training from epoch {max_epoch}")
# load the checkpoint
ckpt_net_g = torch.load(f"{base_path}/{max_epoch}/net_g.pth")
ckpt_net_d = torch.load(f"{base_path}/{max_epoch}/net_d.pth")
ckpt_opt_g = torch.load(f"{base_path}/{max_epoch}/opt_g.pth")
ckpt_opt_d = torch.load(f"{base_path}/{max_epoch}/opt_d.pth")
# load the model
net_g.load_state_dict(ckpt_net_g)
net_d.load_state_dict(ckpt_net_d)
# load the optimizer
opt_g.load_state_dict(ckpt_opt_g)
opt_d.load_state_dict(ckpt_opt_d)
# start from the next epoch
start_epoch = int(max_epoch) + 1
else:
start_epoch = 0
# Train
progress_losses_g = []
progress_losses_d = []
epoch_char_len = len(str(args.num_epochs))
epoch_format = lambda epoch: f"[{epoch:{epoch_char_len}d}/{args.num_epochs}] "
for epoch in trange(start_epoch, args.num_epochs, desc="Epoch", ncols=70):
log = lambda msg: logger.info(epoch_format(epoch) + msg)
losses = train_epoch(net_g, net_d, opt_g, opt_d, dataloader, criterion,
args.z_dim, device, log, args.double_step)
losses_g, losses_d = losses
total_loss_g = sum([x[0] * x[1] for x in losses_g]) / sum([x[1] for x in losses_g])
total_loss_d = sum([x[0] * x[1] for x in losses_d]) / sum([x[1] for x in losses_d])
log(f"Loss D: {total_loss_d:.4f} Loss G: {total_loss_g:.4f}")
progress_losses_g.extend(losses_g)
progress_losses_d.extend(losses_d)
epoch_path = f"{base_path}/{epoch:03d}"
os.makedirs(epoch_path, exist_ok=True)
logger.debug(f"Folder created: {epoch_path}/")
## Save checkpoint
if (epoch + 1) % 5 == 0:
torch.save(net_g.state_dict(), f"{epoch_path}/net_g.pth")
logger.debug(f"Save generator network to '{epoch_path}/net_g.pth'")
torch.save(net_d.state_dict(), f"{epoch_path}/net_d.pth")
logger.debug(f"Save discriminator network to '{epoch_path}/net_d.pth'")
torch.save(opt_g.state_dict(), f"{epoch_path}/opt_g.pth")
logger.debug(f"Save generator optimizer to '{epoch_path}/opt_g.pth'")
torch.save(opt_d.state_dict(), f"{epoch_path}/opt_d.pth")
logger.debug(f"Save discriminator optimizer to '{epoch_path}/opt_d.pth'")
## Save output
with torch.no_grad():
net_g.eval()
fake_images = net_g(fixed_noise)
fig = plot_images(fake_images)
fig.savefig(f"{epoch_path}/generated.png")
plt.close(fig)
logger.debug(f"Save progress images to '{epoch_path}/generated.png'")
if (epoch + 1) % 2 == 0:
for t in range(1):
try:
real_images = next(test_iter)
except StopIteration:
test_iter = iter(test_dataloader)
real_images = next(test_iter)
noise = torch.randn(args.num_test, args.z_dim, device=device)
fake_images = denormalize(net_g(noise))
os.makedirs(f"{epoch_path}/images/", exist_ok=True)
logger.debug(f"Folder created: {epoch_path}/images")
torch.save(real_images, f"{epoch_path}/images/real-{t}.pth")
logger.debug(f"Save real images to '{epoch_path}/images/real-{t}.pth'")
torch.save(fake_images, f"{epoch_path}/images/fake-{t}.pth")
logger.debug(f"Save fake images to '{epoch_path}/images/fake-{t}.pth'")
fid_score = fid_model(real_images.to(device), fake_images.to(device))
log(f"FID: {fid_score:.4f}")
with open(f"{epoch_path}/images/fid-{t:03d}.txt", "w") as f:
f.write(f"{fid_score:.6f}\n")
if __name__ == "__main__":
import multiprocessing
NGPU = torch.cuda.device_count()
NCPU = multiprocessing.cpu_count()
NW = NCPU // 2
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Environment
parser.add_argument("-n", "--train-name", type=str, default="", help="Name of training run")
parser.add_argument("-g", "--num-gpu", type=int, default=NGPU, help="Number of GPUs (0 = CPU)")
parser.add_argument("-s", "--seed", type=int, default=109, help="Random seed")
# DataLoader
parser.add_argument("-w", "--num-workers", type=int, default=NW, help="Number of workers for dataloader")
parser.add_argument("-bs", "--batch-size", type=int, default=128, help="Batch size during training")
parser.add_argument("-is", "--image-size", type=int, default=64, help="Spatial size of training images")
# Model
parser.add_argument("-fg", "--num-features-generator", type=int, default=64, help="Size of feature maps in generator")
parser.add_argument("-fd", "--num-features-discriminator", type=int, default=64, help="Size of feature maps in discriminator")
parser.add_argument("-z", "--z-dim", type=int, default=128, help="Dimension of z latent vector")
parser.add_argument("-id", "--inception-dim", type=int, default=2048, help="Dimension of inception module")
# Training
parser.add_argument("-e", "--num-epochs", type=int, default=100, help="Number of training epochs")
parser.add_argument("-b1", "--beta1", type=float, default=0.5, help="Beta1 for Adam optimizers")
parser.add_argument("-lrg", "--lr-generator", type=float, default=2e-4, help="Learning rate for optimizers")
parser.add_argument("-lrd", "--lr-discriminator", type=float, default=2e-4, help="Learning rate for optimizers")
parser.add_argument("-ds", "--double-step", action="store_true", help="Double learning step for generator")
parser.add_argument("-t", "--num-test", type=int, default=1000, help="Number of test images")
# Misc
parser.add_argument("-det", "--deterministic", action="store_true", help="Deterministic training")
parser.add_argument("-d", "--debug", action="store_true", help="Turn on debug messages")
parser.add_argument("-r", "--resume", action="store_true", help="Resume training from checkpoint")
# Parse
args = parser.parse_args()
train_exists = os.path.exists(f"./out/{args.train_name}")
if args.train_name == "":
args.train_name = datetime.now().strftime("%Y%m%d-%H%M%S")
elif train_exists and not args.resume:
print(f"Train name '{args.train_name}' already exist.\n"
"Use --resume to resume training or use another name.")
exit(1)
elif not train_exists and args.resume:
print(f"Train name '{args.train_name}' does not exist.\n"
"Use a valid train name to resume training.")
exit(1)
elif train_exists and args.resume:
print(f"Resuming training from '{args.train_name}'.\n"
"Warning: Reproducibility is not guaranteed.")
# load_args_from_checkpoint(f"./out/{args.train_name}/train.log") # TODO
os.makedirs(f"./out/{args.train_name}", exist_ok=True)
with open(f"./out/{args.train_name}/args.json", "w") as f:
json.dump(vars(args), f, indent=4)
# Set random seed
set_seed(args.seed, deterministic=args.deterministic)
# Set logger
logger = logging.getLogger("train_logger")
logger.setLevel(logging.DEBUG if args.debug else logging.INFO)
logger_fmt = "[%(asctime)s] [%(levelname)s] %(message)s"
console_handler = TqdmHandler()
file_handler = logging.FileHandler(f"./out/{args.train_name}/train.log")
file_handler.setLevel(logging.DEBUG)
console_handler.setFormatter(logging.Formatter(fmt=logger_fmt, datefmt="%H:%M:%S"))
file_handler.setFormatter(logging.Formatter(fmt=logger_fmt, datefmt="%Y-%m-%d %H:%M:%S"))
logger.addHandler(console_handler)
logger.addHandler(file_handler)
args_log_str = (
f"Arguments:\n"
f" * Environment\n"
f" - train-name: {args.train_name}\n"
f" - num-gpu: {args.num_gpu}\n"
f" - seed: {args.seed}\n"
f" * DataLoader\n"
f" - num-workers: {args.num_workers}\n"
f" - batch-size: {args.batch_size}\n"
f" - image-size: {args.image_size}\n"
f" * Model\n"
f" - num-features-generator: {args.num_features_generator}\n"
f" - num-features-discriminator: {args.num_features_discriminator}\n"
f" - z-dim: {args.z_dim}\n"
f" - inception-dim: {args.inception_dim}\n"
f" * Training\n"
f" - num-epochs: {args.num_epochs}\n"
f" - beta1: {args.beta1}\n"
f" - lr-generator: {args.lr_generator}\n"
f" - lr-discriminator: {args.lr_discriminator}\n"
f" - double-step: {args.double_step}\n"
f" - num-test: {args.num_test}"
)
logger.info(format_block(args_log_str))
try:
main(args, logger)
except KeyboardInterrupt:
logger.info("Stopped")
exit()