-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMC_dropout.py
431 lines (372 loc) · 19.6 KB
/
MC_dropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# yuxiaw
# 24 April 2021
# For Regression uncertainty estimation using MC dropout
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
import sys
import random
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from torch.nn import CrossEntropyLoss, MSELoss
from tensorboardX import SummaryWriter
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertConfig, BertForSequenceClassification
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
from args import parse_arguments, default_arguments
from Non_Bayesian_models import HConvBertForSequenceClassification
from run_classifier_dataset_utils import (processors, output_modes, tasks_num_labels,
convert_examples_to_features, compute_metrics)
from util_quantile import check_Z, summary, eval_uncertainty
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
"hconvbert": (BertConfig, HConvBertForSequenceClassification, BertTokenizer),
}
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "6"
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.cuda.manual_seed_all(args.seed)
# ^^ safe to call this function even if cuda is not available
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
output_mode = output_modes[task]
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
'dev' if evaluate else 'train',
list(filter(None, args.weight_path_or_name.split('/'))).pop(),
str(args.max_seq_length),
str(task)))
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
features = convert_examples_to_features(examples,
label_list,
max_seq_length=args.max_seq_length,
tokenizer=tokenizer,
output_mode=output_mode)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
elif output_mode == "regression":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset
def train(args, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
# Set num_labels
num_labels = tasks_num_labels[args.task_name]
# Prepare data loader
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
# Prepare optimizer
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
global_step = 0
nb_tr_steps = 0
tr_loss = 0
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
batch = tuple(t.to(args.device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
# define a new function to compute loss values for both output_modes
logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
if args.output_mode == "classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
elif args.output_mode == "regression":
loss_fct = MSELoss()
# print(logits.size(), label_ids.size())
loss = loss_fct(logits.view(-1), label_ids.view(-1))
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if args.local_rank in [-1, 0]:
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
tb_writer.add_scalar('loss', loss.item(), global_step)
### Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
### Example:
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Save a trained model, configuration and tokenizer
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(args.output_dir)
# Load a trained model and vocabulary that you have fine-tuned
model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
else:
model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
model.to(args.device)
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, MC_dropout = False):
### Evaluation
num_labels = tasks_num_labels[args.task_name]
eval_data = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
if args.local_rank == -1:
eval_sampler = SequentialSampler(eval_data)
else:
eval_sampler = DistributedSampler(eval_data) # Note that this sampler samples randomly
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
if not MC_dropout:
model.eval()
else:
model.train()
eval_loss = 0
nb_eval_steps = 0
preds = []
out_label_ids = None
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(args.device)
input_mask = input_mask.to(args.device)
segment_ids = segment_ids.to(args.device)
label_ids = label_ids.to(args.device)
with torch.no_grad():
logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
# create eval loss and other metric required by the task
if args.output_mode == "classification":
loss_fct = CrossEntropyLoss()
tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
elif args.output_mode == "regression":
loss_fct = MSELoss()
tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if len(preds) == 0:
preds.append(logits.detach().cpu().numpy())
out_label_ids = label_ids.detach().cpu().numpy()
else:
preds[0] = np.append(
preds[0], logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(
out_label_ids, label_ids.detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = preds[0]
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(args.task_name, preds, out_label_ids)
result['eval_loss'] = eval_loss
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
print(" %s = %s" % (key, str(result[key])))
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return preds, out_label_ids
def MC_droput(args, model, tokenizer, num_sampling):
result, predictions = [], []
for i in range(num_sampling):
preds, out_label_ids = evaluate(args, model, tokenizer, MC_dropout = True)
preds = preds.round(decimals=2)
result.append(preds)
# predictions += preds
# save the predicted score in "preds.txt"
# with open(os.path.join(args.output_dir, "preds.txt"), "w") as file:
# file.write("\n".join([str(i) for i in predictions]))
# using result to calculate mean and deviation, matrix mean and deviation
result = np.array(result)
mean, std = result.mean(0), np.std(result, axis=0)
mean = mean.round(decimals=2)
std = std.round(decimals=2)
R = compute_metrics(args.task_name, mean, out_label_ids)
for key in sorted(R.keys()):
logger.info(" %s = %s", key, str(R[key]))
print("%s = %s" % (key, str(R[key])))
# save mean and std for each instance
with open(os.path.join(args.output_dir, "mean_std.txt"), "w") as file:
file.write("\n".join([str(i) + "\t" + str(j) for i,j in zip(mean, std)]))
# uncertainty metric calculation
# samples >=30: make sure 0.05*30 >= 1, otherwise kthvalue get errors
print(result.shape, mean.shape, std.shape) # assume [samples, N], [N,], [N,]
# get y_pj by kthvalue of samples result, more practical
y = summary({"obs": torch.tensor(result, dtype=torch.float)})['obs']
uncertainty_metrics_y = eval_uncertainty(out_label_ids, y)
# get y_pj by normal distribution Z table, more theoretical
mean = torch.tensor(mean, dtype=torch.float)
std = torch.tensor(std, dtype=torch.float)
preds = check_Z(mean, std)
uncertainty_metrics_preds = eval_uncertainty(out_label_ids, preds)
def main():
# load arguments
args = parse_arguments(sys.argv)
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(filename = args.logfile_dir,
format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
# config = config_class.from_pretrained(args.weight_path_or_name, num_labels=num_labels)
tokenizer = tokenizer_class.from_pretrained(args.weight_path_or_name, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.weight_path_or_name, num_labels=num_labels)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Load model to device
if args.fp16:
model.half()
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# args setting done
logger.info("Training/evaluation parameters %s", args)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
# Training
if args.do_train:
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
global_step, tr_loss = train(args, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Evaluation
if args.do_eval and args.local_rank in [-1, 0]:
preds, _ = evaluate(args, model, tokenizer, MC_dropout = False)
# Prediction Uncertainty Estimation
if args.do_mcdropout:
result = MC_droput(args, model, tokenizer, num_sampling = args.num_mc_sampling)
if __name__ == "__main__":
main()