-
Notifications
You must be signed in to change notification settings - Fork 12
/
verify.py
90 lines (76 loc) · 2.74 KB
/
verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""Implementation of evaluate attack result."""
import os
import torch
from torch.autograd import Variable as V
from torch import nn
from torch.autograd.gradcheck import zero_gradients
from torchvision import transforms as T
from Normalize import Normalize, TfNormalize
from loader import ImageNet
from torch.utils.data import DataLoader
from torch_nets import (
tf_inception_v3,
tf_inception_v4,
tf_resnet_v2_50,
tf_resnet_v2_101,
tf_resnet_v2_152,
tf_inc_res_v2,
tf_adv_inception_v3,
tf_ens3_adv_inc_v3,
tf_ens4_adv_inc_v3,
tf_ens_adv_inc_res_v2,
)
batch_size = 10
input_csv = './dataset/images.csv'
input_dir = './dataset/images'
adv_dir = './outputs'
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def get_model(net_name, model_dir):
"""Load converted model"""
model_path = os.path.join(model_dir, net_name + '.npy')
if net_name == 'tf_inception_v3':
net = tf_inception_v3
elif net_name == 'tf_inception_v4':
net = tf_inception_v4
elif net_name == 'tf_resnet_v2_50':
net = tf_resnet_v2_50
elif net_name == 'tf_resnet_v2_101':
net = tf_resnet_v2_101
elif net_name == 'tf_resnet_v2_152':
net = tf_resnet_v2_152
elif net_name == 'tf_inc_res_v2':
net = tf_inc_res_v2
elif net_name == 'tf_adv_inception_v3':
net = tf_adv_inception_v3
elif net_name == 'tf_ens3_adv_inc_v3':
net = tf_ens3_adv_inc_v3
elif net_name == 'tf_ens4_adv_inc_v3':
net = tf_ens4_adv_inc_v3
elif net_name == 'tf_ens_adv_inc_res_v2':
net = tf_ens_adv_inc_res_v2
else:
print('Wrong model name!')
model = nn.Sequential(
# Images for inception classifier are normalized to be in [-1, 1] interval.
TfNormalize('tensorflow'),
net.KitModel(model_path).eval().cuda(),)
return model
def verify(model_name, path):
model = get_model(model_name, path)
X = ImageNet(adv_dir, input_csv, T.Compose([T.ToTensor()]))
data_loader = DataLoader(X, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=8)
sum = 0
for images, _, gt_cpu in data_loader:
gt = gt_cpu.cuda()
images = images.cuda()
with torch.no_grad():
sum += (model(images)[0].argmax(1) != (gt+1)).detach().sum().cpu()
print(model_name + ' acu = {:.2%}'.format(sum / 1000.0))
def main():
model_names = ['tf_inception_v3','tf_inception_v4','tf_inc_res_v2','tf_resnet_v2_50','tf_resnet_v2_101','tf_resnet_v2_152','tf_ens3_adv_inc_v3','tf_ens4_adv_inc_v3','tf_ens_adv_inc_res_v2']
models_path = './models/'
for model_name in model_names:
verify(model_name, models_path)
print("===================================================")
if __name__ == '__main__':
main()