forked from LeeSureman/Flat-Lattice-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
452 lines (355 loc) · 14.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import torch.nn.functional as F
import torch
import random
import numpy as np
from fastNLP import Const
from fastNLP import CrossEntropyLoss
from fastNLP import AccuracyMetric
from fastNLP import Tester
import os
from fastNLP import logger
import torch.nn as nn
class MyDropout(nn.Module):
def __init__(self, p):
super().__init__()
assert 0<=p<=1
self.p = p
def forward(self, x):
if self.training and self.p>0.001:
# print('mydropout!')
mask = torch.rand(x.size())
# print(mask.device)
mask = mask.to(x)
# print(mask.device)
mask = mask.lt(self.p)
x = x.masked_fill(mask, 0)/(1-self.p)
return x
def should_mask(name, t=''):
if 'bias' in name:
return False
if 'embedding' in name:
splited = name.split('.')
if splited[-1]!='weight':
return False
if 'embedding' in splited[-2]:
return False
if 'c0' in name:
return False
if 'h0' in name:
return False
if 'output' in name and t not in name:
return False
return True
def get_init_mask(model):
init_masks = {}
for name, param in model.named_parameters():
if should_mask(name):
init_masks[name+'.mask'] = torch.ones_like(param)
# logger.info(init_masks[name+'.mask'].requires_grad)
return init_masks
def set_seed(seed):
random.seed(seed)
np.random.seed(seed+100)
torch.manual_seed(seed+200)
torch.cuda.manual_seed_all(seed+300)
def get_parameters_size(model):
result = {}
for name,p in model.state_dict().items():
result[name] = p.size()
return result
def prune_by_proportion_model(model,proportion,task):
# print('this time prune to ',proportion*100,'%')
for name, p in model.named_parameters():
# print(name)
if not should_mask(name,task):
continue
tensor = p.data.cpu().numpy()
index = np.nonzero(model.mask[task][name+'.mask'].data.cpu().numpy())
# print(name,'alive count',len(index[0]))
alive = tensor[index]
# print('p and mask size:',p.size(),print(model.mask[task][name+'.mask'].size()))
percentile_value = np.percentile(abs(alive), (1 - proportion) * 100)
# tensor = p
# index = torch.nonzero(model.mask[task][name+'.mask'])
# # print('nonzero len',index)
# alive = tensor[index]
# print('alive size:',alive.shape)
# prune_by_proportion_model()
# percentile_value = torch.topk(abs(alive), int((1-proportion)*len(index[0]))).values
# print('the',(1-proportion)*len(index[0]),'th big')
# print('threshold:',percentile_value)
prune_by_threshold_parameter(p, model.mask[task][name+'.mask'],percentile_value)
# for
def prune_by_proportion_model_global(model,proportion,task):
# print('this time prune to ',proportion*100,'%')
alive = None
for name, p in model.named_parameters():
# print(name)
if not should_mask(name,task):
continue
tensor = p.data.cpu().numpy()
index = np.nonzero(model.mask[task][name+'.mask'].data.cpu().numpy())
# print(name,'alive count',len(index[0]))
if alive is None:
alive = tensor[index]
else:
alive = np.concatenate([alive,tensor[index]],axis=0)
percentile_value = np.percentile(abs(alive), (1 - proportion) * 100)
for name, p in model.named_parameters():
if should_mask(name,task):
prune_by_threshold_parameter(p, model.mask[task][name+'.mask'],percentile_value)
def prune_by_threshold_parameter(p, mask, threshold):
p_abs = torch.abs(p)
new_mask = (p_abs > threshold).float()
# print(mask)
mask[:]*=new_mask
def one_time_train_and_prune_single_task(trainer,PRUNE_PER,
optimizer_init_state_dict=None,
model_init_state_dict=None,
is_global=None,
):
from fastNLP import Trainer
trainer.optimizer.load_state_dict(optimizer_init_state_dict)
trainer.model.load_state_dict(model_init_state_dict)
# print('metrics:',metrics.__dict__)
# print('loss:',loss.__dict__)
# print('trainer input:',task.train_set.get_input_name())
# trainer = Trainer(model=model, train_data=task.train_set, dev_data=task.dev_set, loss=loss, metrics=metrics,
# optimizer=optimizer, n_epochs=EPOCH, batch_size=BATCH, device=device,callbacks=callbacks)
trainer.train(load_best_model=True)
# tester = Tester(task.train_set, model, metrics, BATCH, device=device, verbose=1,use_tqdm=False)
# print('FOR DEBUG: test train_set:',tester.test())
# print('**'*20)
# if task.test_set:
# tester = Tester(task.test_set, model, metrics, BATCH, device=device, verbose=1)
# tester.test()
if is_global:
prune_by_proportion_model_global(trainer.model, PRUNE_PER, trainer.model.now_task)
else:
prune_by_proportion_model(trainer.model, PRUNE_PER, trainer.model.now_task)
# def iterative_train_and_prune_single_task(get_trainer,ITER,PRUNE,is_global=False,save_path=None):
def iterative_train_and_prune_single_task(get_trainer,args,model,train_set,dev_set,test_set,device,save_path=None):
'''
:param trainer:
:param ITER:
:param PRUNE:
:param is_global:
:param save_path: should be a dictionary which will be filled with mask and state dict
:return:
'''
from fastNLP import Trainer
import torch
import math
import copy
PRUNE = args.prune
ITER = args.iter
trainer = get_trainer(args,model,train_set,dev_set,test_set,device)
optimizer_init_state_dict = copy.deepcopy(trainer.optimizer.state_dict())
model_init_state_dict = copy.deepcopy(trainer.model.state_dict())
if save_path is not None:
if not os.path.exists(save_path):
os.makedirs(save_path)
# if not os.path.exists(os.path.join(save_path, 'model_init.pkl')):
# f = open(os.path.join(save_path, 'model_init.pkl'), 'wb')
# torch.save(trainer.model.state_dict(),f)
mask_count = 0
model = trainer.model
task = trainer.model.now_task
for name, p in model.mask[task].items():
mask_count += torch.sum(p).item()
init_mask_count = mask_count
logger.info('init mask count:{}'.format(mask_count))
# logger.info('{}th traning mask count: {} / {} = {}%'.format(i, mask_count, init_mask_count,
# mask_count / init_mask_count * 100))
prune_per_iter = math.pow(PRUNE, 1 / ITER)
for i in range(ITER):
trainer = get_trainer(args,model,train_set,dev_set,test_set,device)
one_time_train_and_prune_single_task(trainer,prune_per_iter,optimizer_init_state_dict,model_init_state_dict)
if save_path is not None:
f = open(os.path.join(save_path,task+'_mask_'+str(i)+'.pkl'),'wb')
torch.save(model.mask[task],f)
mask_count = 0
for name, p in model.mask[task].items():
mask_count += torch.sum(p).item()
logger.info('{}th traning mask count: {} / {} = {}%'.format(i,mask_count,init_mask_count,mask_count/init_mask_count*100))
def get_appropriate_cuda(task_scale='s'):
if task_scale not in {'s','m','l'}:
logger.info('task scale wrong!')
exit(2)
import pynvml
pynvml.nvmlInit()
total_cuda_num = pynvml.nvmlDeviceGetCount()
for i in range(total_cuda_num):
logger.info(i)
handle = pynvml.nvmlDeviceGetHandleByIndex(i) # 这里的0是GPU id
memInfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
utilizationInfo = pynvml.nvmlDeviceGetUtilizationRates(handle)
logger.info(i, 'mem:', memInfo.used / memInfo.total, 'util:',utilizationInfo.gpu)
if memInfo.used / memInfo.total < 0.15 and utilizationInfo.gpu <0.2:
logger.info(i,memInfo.used / memInfo.total)
return 'cuda:'+str(i)
if task_scale=='s':
max_memory=2000
elif task_scale=='m':
max_memory=6000
else:
max_memory = 9000
max_id = -1
for i in range(total_cuda_num):
handle = pynvml.nvmlDeviceGetHandleByIndex(0) # 这里的0是GPU id
memInfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
utilizationInfo = pynvml.nvmlDeviceGetUtilizationRates(handle)
if max_memory < memInfo.free:
max_memory = memInfo.free
max_id = i
if id == -1:
logger.info('no appropriate gpu, wait!')
exit(2)
return 'cuda:'+str(max_id)
# if memInfo.used / memInfo.total < 0.5:
# return
def print_mask(mask_dict):
def seq_mul(*X):
res = 1
for x in X:
res*=x
return res
for name,p in mask_dict.items():
total_size = seq_mul(*p.size())
unmasked_size = len(np.nonzero(p))
print(name,':',unmasked_size,'/',total_size,'=',unmasked_size/total_size*100,'%')
print()
def check_words_same(dataset_1,dataset_2,field_1,field_2):
if len(dataset_1[field_1]) != len(dataset_2[field_2]):
logger.info('CHECK: example num not same!')
return False
for i, words in enumerate(dataset_1[field_1]):
if len(dataset_1[field_1][i]) != len(dataset_2[field_2][i]):
logger.info('CHECK {} th example length not same'.format(i))
logger.info('1:{}'.format(dataset_1[field_1][i]))
logger.info('2:'.format(dataset_2[field_2][i]))
return False
# for j,w in enumerate(words):
# if dataset_1[field_1][i][j] != dataset_2[field_2][i][j]:
# print('CHECK', i, 'th example has words different!')
# print('1:',dataset_1[field_1][i])
# print('2:',dataset_2[field_2][i])
# return False
logger.info('CHECK: totally same!')
return True
def get_now_time():
import time
from datetime import datetime, timezone, timedelta
dt = datetime.utcnow()
# print(dt)
tzutc_8 = timezone(timedelta(hours=8))
local_dt = dt.astimezone(tzutc_8)
result = ("_{}_{}_{}__{}_{}_{}".format(local_dt.year, local_dt.month, local_dt.day, local_dt.hour, local_dt.minute,
local_dt.second))
return result
def get_bigrams(words):
result = []
for i,w in enumerate(words):
if i!=len(words)-1:
result.append(words[i]+words[i+1])
else:
result.append(words[i]+'<end>')
return result
def print_info(*inp,islog=True,sep=' '):
from fastNLP import logger
if islog:
print(*inp,sep=sep)
else:
inp = sep.join(map(str,inp))
logger.info(inp)
def better_init_rnn(rnn,coupled=False):
import torch.nn as nn
if coupled:
repeat_size = 3
else:
repeat_size = 4
# print(list(rnn.named_parameters()))
if hasattr(rnn,'num_layers'):
for i in range(rnn.num_layers):
nn.init.orthogonal_(getattr(rnn,'weight_ih_l'+str(i)).data)
weight_hh_data = torch.eye(rnn.hidden_size)
weight_hh_data = weight_hh_data.repeat(1, repeat_size)
with torch.no_grad():
getattr(rnn,'weight_hh_l'+str(i)).set_(weight_hh_data)
nn.init.constant_(getattr(rnn,'bias_ih_l'+str(i)).data, val=0)
nn.init.constant_(getattr(rnn,'bias_hh_l'+str(i)).data, val=0)
if rnn.bidirectional:
for i in range(rnn.num_layers):
nn.init.orthogonal_(getattr(rnn, 'weight_ih_l' + str(i)+'_reverse').data)
weight_hh_data = torch.eye(rnn.hidden_size)
weight_hh_data = weight_hh_data.repeat(1, repeat_size)
with torch.no_grad():
getattr(rnn, 'weight_hh_l' + str(i)+'_reverse').set_(weight_hh_data)
nn.init.constant_(getattr(rnn, 'bias_ih_l' + str(i)+'_reverse').data, val=0)
nn.init.constant_(getattr(rnn, 'bias_hh_l' + str(i)+'_reverse').data, val=0)
else:
nn.init.orthogonal_(rnn.weight_ih.data)
weight_hh_data = torch.eye(rnn.hidden_size)
weight_hh_data = weight_hh_data.repeat(repeat_size,1)
with torch.no_grad():
rnn.weight_hh.set_(weight_hh_data)
# The bias is just set to zero vectors.
print('rnn param size:{},{}'.format(rnn.weight_hh.size(),type(rnn)))
if rnn.bias:
nn.init.constant_(rnn.bias_ih.data, val=0)
nn.init.constant_(rnn.bias_hh.data, val=0)
# print(list(rnn.named_parameters()))
def get_crf_zero_init(label_size, include_start_end_trans=False, allowed_transitions=None,
initial_method=None):
import torch.nn as nn
from fastNLP.modules import ConditionalRandomField
crf = ConditionalRandomField(label_size, include_start_end_trans)
crf.trans_m = nn.Parameter(torch.zeros(size=[label_size, label_size], requires_grad=True))
if crf.include_start_end_trans:
crf.start_scores = nn.Parameter(torch.zeros(size=[label_size], requires_grad=True))
crf.end_scores = nn.Parameter(torch.zeros(size=[label_size], requires_grad=True))
return crf
def get_peking_time():
import time
import datetime
import pytz
tz = pytz.timezone('Asia/Shanghai') # 东八区
t = datetime.datetime.fromtimestamp(int(time.time()), pytz.timezone('Asia/Shanghai')).strftime('%Y_%m_%d_%H_%M_%S')
return t
def norm_static_embedding(x,norm=1):
with torch.no_grad():
x.embedding.weight /= (torch.norm(x.embedding.weight, dim=1, keepdim=True) + 1e-12)
x.embedding.weight *= norm
def modelsize(model, input, type_size=4):
para = sum([np.prod(list(p.size())) for p in model.parameters()])
print('Model {} : params: {:4f}M'.format(model._get_name(), para * type_size / 1000 / 1000))
input_ = input.clone()
input_.requires_grad_(requires_grad=False)
mods = list(model.modules())
out_sizes = []
for i in range(1, len(mods)):
m = mods[i]
if isinstance(m, nn.ReLU):
if m.inplace:
continue
out = m(input_)
out_sizes.append(np.array(out.size()))
input_ = out
total_nums = 0
for i in range(len(out_sizes)):
s = out_sizes[i]
nums = np.prod(np.array(s))
total_nums += nums
print('Model {} : intermedite variables: {:3f} M (without backward)'
.format(model._get_name(), total_nums * type_size / 1000 / 1000))
print('Model {} : intermedite variables: {:3f} M (with backward)'
.format(model._get_name(), total_nums * type_size*2 / 1000 / 1000))
def size2MB(size_,type_size=4):
num = 1
for s in size_:
num*=s
return num * type_size /1000 /1000
if __name__ == '__main__':
a = get_peking_time()
print(a)
print(type(a))