forked from wangsssky/MedicalMatting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
89 lines (69 loc) · 3.02 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# configuration for the models
import yaml
class Config:
def __init__(self, config_path):
with open(config_path, encoding='utf-8') as f:
yaml_dict = yaml.load(f, Loader=yaml.FullLoader)
# ----------- parse yaml ---------------#
self.DATA_PATH = yaml_dict['DATA_PATH']
self.DATASET = yaml_dict['DATASET']
if 'MASK_NUM' in yaml_dict:
self.MASK_NUM = yaml_dict['MASK_NUM']
else:
if self.DATASET == 'brain-growth':
self.MASK_NUM = 7
self.INPUT_CHANNEL = 1
self.INPUT_SIZE = 128
elif self.DATASET == 'lidc':
self.MASK_NUM = 4
self.INPUT_CHANNEL = 1
self.INPUT_SIZE = 128
elif self.DATASET == 'isic':
self.MASK_NUM = 3
self.INPUT_CHANNEL = 3
self.INPUT_SIZE = 256
else:
raise ValueError('unsupport dataset {}'.format(self.DATASET))
print('MASK_NUM:', self.MASK_NUM)
if 'LEVEL' in yaml_dict:
self.LEVEL = yaml_dict['LEVEL']
print('LEVEL:', self.LEVEL)
else:
self.LEVEL = None
self.KFOLD = yaml_dict['KFOLD']
self.RANDOM_SEED = yaml_dict['RANDOM_SEED']
self.USE_MATTING = yaml_dict['USE_MATTING']
if self.USE_MATTING:
self.MODEL_NAME = 'ProbUnet_Matting'
else:
self.MODEL_NAME = 'ProbUnet'
self.MODEL_DIR = yaml_dict['MODEL_DIR'] + self.MODEL_NAME
self.UNCERTAINTY_MAP = yaml_dict['UNCERTAINTY_MAP']
self.EPOCH_NUM = yaml_dict['EPOCH_NUM']
self.RESUME_FROM = yaml_dict['RESUME_FROM']
self.TRAIN_MATTING_START_FROM = yaml_dict['TRAIN_MATTING_START_FROM']
self.TRAIN_BATCHSIZE = yaml_dict['TRAIN_BATCHSIZE']
self.VAL_BATCHSIZE = yaml_dict['VAL_BATCHSIZE']
self.TRAIN_TIME_AUG = yaml_dict['TRAIN_TIME_AUG']
self.OPTIMIZER = yaml_dict['OPTIMIZER']
self.WEIGHT_DECAY = yaml_dict['WEIGHT_DECAY']
self.MOMENTUM = yaml_dict['MOMENTUM']
self.LEARNING_RATE = float(yaml_dict['LEARNING_RATE'])
self.WARM_LEN = yaml_dict['WARM_LEN']
self.GEN_TYPE = yaml_dict['GEN_TYPE']
self.NUM_FILTERS = yaml_dict['NUM_FILTERS']
self.LATENT_DIM = yaml_dict['LATENT_DIM']
self.SAMPLING_NUM = yaml_dict['SAMPLING_NUM']
self.USE_BN = yaml_dict['USE_BN']
self.POSTERIOR_TARGET = yaml_dict['POSTERIOR_TARGET']
# self.REG_SCALE = float(yaml_dict['REG_SCALE'])
self.KL_SCALE = float(yaml_dict['KL_SCALE'])
self.RECONSTRUCTION_SCALE = yaml_dict['RECONSTRUCTION_SCALE']
self.ALPHA_SCALE = yaml_dict['ALPHA_SCALE']
self.ALPHA_GRADIENT_SCALE = yaml_dict['ALPHA_GRADIENT_SCALE']
self.LOSS_STRATEGY = yaml_dict['LOSS_STRATEGY']
self.PRT_LOSS = yaml_dict['PRT_LOSS']
self.VISUALIZE = yaml_dict['VISUALIZE']
if __name__ == '__main__':
cfg = Config(config_path='./params.yaml')
print(cfg)