-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorboard_exam.py
91 lines (69 loc) · 2.83 KB
/
tensorboard_exam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 9 17:53:44 2018
@author: FurryMonster Yang
"""
import tensorflow as tf
# reset everything to rerun in jupyter
tf.reset_default_graph()
# config
batch_size = 100
learning_rate = 0.5
training_epochs = 10
logs_path = "tensor_board_test"
epoch = 5
# load mnist data set
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# input images
with tf.name_scope('input'):
# None -> batch size can be any size, 784 -> flattened mnist image
x = tf.placeholder(tf.float32, shape=[None, 784], name="x-input")
# target 10 output classes
y_ = tf.placeholder(tf.float32, shape=[None, 10], name="y-input")
# model parameters will change during training so we use tf.Variable
with tf.name_scope("weights"):
W = tf.Variable(tf.zeros([784, 10]))
# bias
with tf.name_scope("biases"):
b = tf.Variable(tf.zeros([10]))
# implement model
with tf.name_scope("softmax"):
# y is our prediction
y = tf.nn.softmax(tf.matmul(x,W) + b)
# specify cost function
with tf.name_scope('cross_entropy'):
# this is our cost
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# specify optimizer
with tf.name_scope('train'):
# optimizer is an "operation" which we can execute in a session
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
with tf.name_scope('Accuracy'):
# Accuracy
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# create a summary for our cost and accuracy
tf.summary.scalar("cost", cross_entropy)
tf.summary.scalar("accuracy", accuracy)
# merge all summaries into a single "operation" which we can execute in a session
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
# variables need to be initialized before we can use them
sess.run(tf.global_variables_initializer())
# create log writer object
writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
# perform training cycles
for epoch in range(training_epochs):
# number of batches in one epoch
batch_count = int(mnist.train.num_examples/batch_size)
for i in range(batch_count):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# perform the operations we defined earlier on batch
_, summary = sess.run([train_op, summary_op], feed_dict={x: batch_x, y_: batch_y})
# write log
writer.add_summary(summary, epoch * batch_count + i)
if epoch % 5 == 0:
print( "Epoch: ", epoch)
print("Accuracy: ", accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
print("done")