forked from pbaylies/stylegan2
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
142 lines (115 loc) · 5.57 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import copy
import warnings
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
import sys, getopt, os
import numpy as np
import dnnlib
from dnnlib import EasyDict
import dnnlib.tflib as tflib
from dnnlib.tflib import tfutil
from dnnlib.tflib.autosummary import autosummary
from training import misc
import pickle
import argparse
def create_model(config_id = 'config-f', gamma = None, height = 512, width = 512, cond = None, label_size = 0):
train = EasyDict(run_func_name='training.diagnostic.create_initial_pkl') # Options for training loop.
G = EasyDict(func_name='training.networks_stylegan2.G_main') # Options for generator network.
D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2') # Options for discriminator network.
D_loss = EasyDict(func_name='training.loss.D_logistic_r1') # Options for discriminator loss.
sched = EasyDict() # Options for TrainingSchedule.
sc = dnnlib.SubmitConfig() # Options for dnnlib.submit_run().
tf_config = {'rnd.np_random_seed': 1000} # Options for tflib.init_tf().
sched.minibatch_size_base = 192
sched.minibatch_gpu_base = 3
D_loss.gamma = 10
desc = 'stylegan2'
dataset_args = EasyDict() # (tfrecord_dir=dataset)
if cond:
desc += '-cond'; dataset_args.max_label_size = 'full' # conditioned on full label
desc += '-' + config_id
# Configs A-E: Shrink networks to match original StyleGAN.
if config_id != 'config-f':
G.fmap_base = D.fmap_base = 8 << 10
# Config E: Set gamma to 100 and override G & D architecture.
if config_id.startswith('config-e'):
D_loss.gamma = 100
if 'Gorig' in config_id: G.architecture = 'orig'
if 'Gskip' in config_id: G.architecture = 'skip' # (default)
if 'Gresnet' in config_id: G.architecture = 'resnet'
if 'Dorig' in config_id: D.architecture = 'orig'
if 'Dskip' in config_id: D.architecture = 'skip'
if 'Dresnet' in config_id: D.architecture = 'resnet' # (default)
# Configs A-D: Enable progressive growing and switch to networks that support it.
if config_id in ['config-a', 'config-b', 'config-c', 'config-d']:
sched.lod_initial_resolution = 8
sched.G_lrate_base = sched.D_lrate_base = 0.001
sched.G_lrate_dict = sched.D_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}
sched.minibatch_size_base = 32 # (default)
sched.minibatch_size_dict = {8: 256, 16: 128, 32: 64, 64: 32}
sched.minibatch_gpu_base = 4 # (default)
sched.minibatch_gpu_dict = {8: 32, 16: 16, 32: 8, 64: 4}
G.synthesis_func = 'G_synthesis_stylegan_revised'
D.func_name = 'training.networks_stylegan2.D_stylegan'
# Configs A-C: Disable path length regularization.
if config_id in ['config-a', 'config-b', 'config-c']:
G_loss = EasyDict(func_name='training.loss.G_logistic_ns')
# Configs A-B: Disable lazy regularization.
if config_id in ['config-a', 'config-b']:
train.lazy_regularization = False
# Config A: Switch to original StyleGAN networks.
if config_id == 'config-a':
G = EasyDict(func_name='training.networks_stylegan.G_style')
D = EasyDict(func_name='training.networks_stylegan.D_basic')
if gamma is not None:
D_loss.gamma = gamma
G.update(resolution_h=height)
G.update(resolution_w=width)
D.update(resolution_h=height)
D.update(resolution_w=width)
sc.submit_target = dnnlib.SubmitTarget.DIAGNOSTIC
sc.local.do_not_copy_source_files = True
kwargs = EasyDict(train)
# [EDITED]
kwargs.update(G_args=G, D_args=D, tf_config=tf_config, config_id=config_id,
resolution_h=height, resolution_w=width, label_size = label_size)
kwargs.submit_config = copy.deepcopy(sc)
kwargs.submit_config.run_desc = desc
dnnlib.submit_diagnostic(**kwargs)
return f'network-initial-config-f-{height}x{width}-{label_size}.pkl'
def _str_to_bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def _parse_comma_sep(s):
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
def copy_weights(source_pkl, target_pkl, output_pkl):
tflib.init_tf()
with tf.Session():
with tf.device('/gpu:0'):
sourceG, sourceD, sourceGs = pickle.load(open(source_pkl, 'rb'))
targetG, targetD, targetGs = pickle.load(open(target_pkl, 'rb'))
# print('Source:')
# sourceG.print_layers()
# sourceD.print_layers()
# sourceGs.print_layers()
# print('Target:')
# targetG.print_layers()
# targetD.print_layers()
# targetGs.print_layers()
targetG.copy_compatible_trainables_from(sourceG)
targetD.copy_compatible_trainables_from(sourceD)
targetGs.copy_compatible_trainables_from(sourceGs)
with open(os.path.join('./', output_pkl), 'wb') as file:
pickle.dump((targetG, targetD, targetGs), file, protocol=pickle.HIGHEST_PROTOCOL)