-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·353 lines (280 loc) · 9.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""
Main module.
"""
from typing import Dict, List
import argparse
import copy
import os
import shutil
from medical_terms import SentenceReader, Processor, Cluster, UMLS_local
from medical_terms import Concepts, Record
from medical_terms import Networks, Analysis, Types, UMLS_remote
class Logger():
"""
Coordinates output file writing.
"""
def __init__(self, filepath):
self.stream = open(filepath, 'w')
def __del__(self):
self.stream.close()
def write(self, message):
print(message)
self.stream.write(str(message) + '\n')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--umls-db-path",
dest="umls_database_filepath",
default="",
help="Path to directory where UMLS Thesaurus files and databases are located."
)
parser.add_argument(
'filepath',
metavar='N',
help="Questionnaire PDF filepath."
)
return parser.parse_args()
def load_sentences(filepath):
raw_sentences = SentenceReader.load_sentences_from_pdf(filepath)
model = Processor.initialize_model()
# !. Load sentences and locate included UMLS terms.
loaded_sentences = []
base_logger = Logger("sentences-terms.txt")
for sentence in raw_sentences:
entities = Processor.process_sentence(model, sentence)
sentence.umls_entities = entities
sentence.show(base_logger)
# umls = Processor.locate_umls_entities(model, sentence)
loaded_sentences.append(sentence)
return loaded_sentences
def remove_semantic_types(sentences, umls_name_map, category_blacklist):
atemp_sentences = copy.deepcopy(sentences)
for sentence in atemp_sentences:
for token in list(sentence.umls_entities.keys()):
w = sentence.umls_entities[token]
sentence.umls_entities[token] = [
(term, score)
for term, score in w
if term in umls_name_map.keys() and umls_name_map[term][2] not in category_blacklist
]
return atemp_sentences
def main():
arguments = parse_arguments()
loaded_sentences = load_sentences(arguments.filepath)
Processor.filter_term_scores(loaded_sentences)
# Initialize UMLS concept retrievers
UMLS = UMLS_local.UMLS(arguments.umls_database_filepath)
remote_umls_agent = UMLS_remote.UMLS()
#
#
# ...
ExpansionMethods = [
[Types.ExpansionMethod.core],
[Types.ExpansionMethod.core, Types.ExpansionMethod.ancestors],
[Types.ExpansionMethod.ancestors],
]
sentence_grouping_blacklists = [
("T", []),
("NO_T", ["Temporal Concept"])
]
sentence_terms = Cluster.extract_sentence_terms(loaded_sentences)
unique_terms = Cluster.extract_unique_terms(sentence_terms)
cui_database = {
cui: Types.CUIRecord(
cui,
"",
ancestors=UMLS.get_relationships(cui, [Types.ExpansionMethod.ancestors]),
descendants=UMLS.get_relationships(cui, [Types.ExpansionMethod.descendants])
)
for cui in unique_terms
}
umls_universes = {
Types.ExpansionMethod.ancestors: Concepts.get_all_subgroup(
cui_database,
group_name=Types.ExpansionMethod.ancestors),
Types.ExpansionMethod.descendants: Concepts.get_all_subgroup(
cui_database,
group_name=Types.ExpansionMethod.descendants),
Types.ExpansionMethod.core: set(unique_terms)
}
named_set = set.union(
umls_universes[Types.ExpansionMethod.ancestors],
umls_universes[Types.ExpansionMethod.core]
)
print(len(named_set))
umls_name_map = Record.manage_cached_cui_name_map(
remote_umls_agent,
named_set
)
base_output_dir = "output"
if os.path.isdir(base_output_dir):
shutil.rmtree(base_output_dir)
os.mkdir(base_output_dir)
print("Analysis initialized...")
for output_file_prefix, semantic_blacklist in sentence_grouping_blacklists:
logger = Logger(f"{output_file_prefix}-results.txt")
all_results: List[Types.ClusteringResult] = []
# Apply preprocessing;
sentences = remove_semantic_types(
loaded_sentences,
umls_name_map,
semantic_blacklist
)
for ExpansionMethod in ExpansionMethods:
expansion_code = "+".join([m.name for m in ExpansionMethod])
execution_id = f"{output_file_prefix}-{expansion_code}"
run_result = execute_single_run(
logger,
UMLS,
sentences,
execution_id,
ExpansionMethod
)
all_results.append(run_result)
analyze_results(
logger,
base_output_dir,
sentences,
umls_name_map,
all_results,
umls_universes
)
print("Success.")
def analyze_results(logger,
base_output_dir,
sentences,
umls_name_map,
all_results,
umls_universes):
"""
Analyze run results: create image files, save text files, etc...
"""
for run_result in all_results:
logger.write(f"Clusters for {run_result.execution_id}")
# Write cluster text files;
Cluster.visualize_clusters(
logger,
sentences,
run_result.cluster_labels,
umls_name_map
)
#
Analysis.plot_cluster_mini_matrices(
base_output_dir,
run_result.expanded_scored_terms,
run_result.cluster_labels,
umls_name_map,
run_result.execution_id
)
# Plot feature matrix;
reordered_feature_matrix = Analysis.reorder_matrix(
run_result.feature_matrix,
run_result.cluster_labels
)
feature_names = [
umls_name_map[term][2]
for term in run_result.expanded_unique_terms
]
Analysis.plot_feature_matrix(
reordered_feature_matrix,
f"Feature Matrix-{run_result.execution_id}",
output_filepath=os.path.join(
base_output_dir,
f"clusters-{run_result.execution_id}.png",
),
feature_ids=feature_names
)
# Plot distance matrix;
distance_filepath = os.path.join(
base_output_dir,
f"distance-{run_result.execution_id}.png"
)
Analysis.plot_distance_matrices(
run_result,
distance_filepath
)
# Build graphs;
graph_filepath = os.path.join(
base_output_dir,
f"graph-{run_result.execution_id}.png"
)
Networks.build_knowledge_graph(
run_result,
umls_universes,
umls_name_map,
graph_filepath
)
def execute_single_run(logger,
UMLS,
sentences,
execution_id,
ExpansionMethod) -> Types.ClusteringResult:
"""
Coordinate the evaluation execution for a single parameter set.
"""
sentence_terms = Cluster.extract_sentence_terms(sentences)
unique_terms = Cluster.extract_unique_terms(sentence_terms)
K = len(unique_terms)
logger.write(f"Found {K} unique UMLS terms before expansion.")
expansion_relationships, expanded_scored_terms = execute_expansion(
UMLS,
sentences,
unique_terms,
ExpansionMethod,
)
expanded_unique_terms = [
label
for label, score in
Cluster.extract_unique_terms(
expanded_scored_terms)
]
Ke = len(list(set(expanded_unique_terms)))
logger.write(f"Found {Ke} unique UMLS terms after expansion.")
m = " + ".join([m.name for m in ExpansionMethod])
logger.write(f"Calculating clusters... expansion rules: {m}")
assert expanded_unique_terms, f"No expanded terms detected! EM={ExpansionMethod}"
feature_matrix = Cluster.build_matrix(
expanded_unique_terms,
expanded_scored_terms
)
# TODO: Feature reduction?
# reduced_matrix = Cluster.agglomerate_features(feature_matrix)
# print(reduced_matrix.shape)
cluster_labels, cluster_method = Cluster.clusterize_matrix(feature_matrix)
logger.write(cluster_labels)
logger.write(f"Found {max(cluster_labels)} groups.")
return Types.ClusteringResult(
execution_id,
feature_matrix,
cluster_labels,
expanded_unique_terms,
expanded_scored_terms,
expansion_relationships,
cluster_method
)
def execute_expansion(
UMLS,
sentences,
unique_terms,
ExpansionMethod):
"""
Expand UMLS terms with ancestors and descendants.
Algorithm step #2.
"""
scored_terms = Cluster.extract_sentence_terms_score(sentences)
# Expand terms:
expansion_relationships: Dict[str, List[str]] = {
term: UMLS.get_relationships(
term,
relationship_types=ExpansionMethod)
for term in unique_terms
}
expanded_scored_terms =\
Concepts.merge_umls_terms_with_expansion(
scored_terms,
expansion_relationships,
keep_original=Types.ExpansionMethod.core in ExpansionMethod
)
return expansion_relationships, expanded_scored_terms
if __name__ == "__main__":
main()