-
Notifications
You must be signed in to change notification settings - Fork 0
/
run-consumer_final.py
553 lines (460 loc) · 25.2 KB
/
run-consumer_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
#!/usr/bin/python
# -*- coding: UTF-8
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/. */
# Authors:
# Michael Berg-Mohnicke <michael.berg@zalf.de>
#
# Maintainers:
# Currently maintained by the authors.
#
# This file has been created at the Institute of
# Landscape Systems Analysis at the ZALF.
# Copyright (C: Leibniz Centre for Agricultural Landscape Research (ZALF)
from collections import defaultdict, OrderedDict
import csv
from datetime import datetime
import gc
import json
import numpy as np
import os
from pyproj import CRS, Transformer
import sqlite3
import sys
import timeit
import types
import zmq
import monica_io3
import soil_io3
import monica_run_lib as Mrunlib
PATHS = {
"cj-local-remote": {
"path-to-data-dir": "data/",
"path-to-output-dir": "D:/projects/KlimErtrag/out_remote_local/",
"path-to-csv-output-dir": "D:/projects/KlimErtrag/out_remote_local/"
},
"mbm-local-remote": {
"path-to-data-dir": "data/",
"path-to-output-dir": "out/",
"path-to-csv-output-dir": "csv-out/"
},
"remoteConsumer-remoteMonica": {
"path-to-data-dir": "./data/",
"path-to-output-dir": "/out/out/",
"path-to-csv-output-dir": "/out/csv-out/"
}
}
TEMPLATE_SOIL_PATH = "{local_path_to_data_dir}germany/buek200_1000_25832_etrs89-utm32n.asc"
TEMPLATE_LANDUSE_PATH = "{local_path_to_data_dir}germany/landuse_1000_31469_gk5.asc"
#DATA_SOIL_DB = "germany/buek200.sqlite"
USE_LANDUSE = False
def create_output(msg):
cm_count_to_vals = defaultdict(dict)
for data in msg.get("data", []):
results = data.get("results", [])
is_daily_section = data.get("origSpec", "") == '"daily"'
for vals in results:
if "CM-count" in vals:
cm_count_to_vals[vals["CM-count"]].update(vals)
elif is_daily_section:
cm_count_to_vals[vals["Date"]].update(vals)
cmcs = list(cm_count_to_vals.keys())
cmcs.sort()
last_cmc = cmcs[-1]
if "year" not in cm_count_to_vals[last_cmc]:
cm_count_to_vals.pop(last_cmc)
return cm_count_to_vals
def write_row_to_grids(row_col_data, row, ncols, header, path_to_output_dir, path_to_csv_output_dir, setup_id, is_bgr, is_yields, is_pheno):
"write grids row by row"
if not hasattr(write_row_to_grids, "nodata_row_count"):
write_row_to_grids.nodata_row_count = defaultdict(lambda: 0)
write_row_to_grids.list_of_output_files = defaultdict(list)
make_dict_nparr = lambda: defaultdict(lambda: np.full((ncols,), -9999, dtype=np.float))
if is_bgr:
output_grids = {}
for i in range(1,21):
output_grids[f'Mois_{i}'] = {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4}
output_grids[f'STemp_{i}'] = {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4}
output_keys = ["Mois", "STemp"]
elif is_yields:
output_grids = {
"Yield": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
"tradefavg": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
"heatredavg": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
"frostredavg": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
"oxredavg": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
"LAI": {"data" : make_dict_nparr(), "cast-to": "float", "digit": 2},
"s5doy": {"data" : make_dict_nparr(), "cast-to": "int"},
"sdoy": {"data" : make_dict_nparr(), "cast-to": "int"},
"hdoy": {"data" : make_dict_nparr(), "cast-to": "int"},
"AbBiom": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1}
# "precipsum": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
# "nstressavg": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
# "heatredlast": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
#"frostredlast": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2}
# "nstresslast": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
# "oxredlast": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
# "tradeflast": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2}
#"HeatRed": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
#"FrostRed": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 2},
#"Yield-31-7": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
#"tavg-avg": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
#"tmin-avg": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
#"tmin-min": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
#"tmax-avg": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
#"tmax-max": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
#"precip-sum": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
#"Pot_ET": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1}
}
output_keys = list(output_grids.keys())
elif is_pheno:
output_grids = {
# "Yield": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
# "s1doy": {"data" : make_dict_nparr(), "cast-to": "int"},
# "s2doy": {"data" : make_dict_nparr(), "cast-to": "int"},
# "sedoy": {"data" : make_dict_nparr(), "cast-to": "int"},
# "s3doy": {"data" : make_dict_nparr(), "cast-to": "int"},
# "s4doy": {"data" : make_dict_nparr(), "cast-to": "int"},
# "s6doy": {"data" : make_dict_nparr(), "cast-to": "int"},
#"s7doy": {"data" : make_dict_nparr(), "cast-to": "int"}
}
output_keys = list(output_grids.keys())
else:
output_grids = {
# "Yield": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 1},
# "sdoy": {"data" : make_dict_nparr(), "cast-to": "int"},
"ssm03": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"ssm36": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"ssm69": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
# "s2doy": {"data" : make_dict_nparr(), "cast-to": "int"},
"s2sm03": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s2sm36": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s2sm69": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
# "sedoy": {"data" : make_dict_nparr(), "cast-to": "int"},
"sesm03": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"sesm36": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"sesm69": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
# "s3doy": {"data" : make_dict_nparr(), "cast-to": "int"},
"s3sm03": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s3sm36": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s3sm69": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
# "s4doy": {"data" : make_dict_nparr(), "cast-to": "int"},
"s4sm03": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s4sm36": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s4sm69": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
# "s5doy": {"data" : make_dict_nparr(), "cast-to": "int"},
"s5sm03": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s5sm36": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s5sm69": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
# "s6doy": {"data" : make_dict_nparr(), "cast-to": "int"},
"s6sm03": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s6sm36": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s6sm69": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
# "s7doy": {"data" : make_dict_nparr(), "cast-to": "int"},
"s7sm03": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s7sm36": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"s7sm69": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
# "hdoy": {"data" : make_dict_nparr(), "cast-to": "int"},
"hsm03": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"hsm36": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
"hsm69": {"data" : make_dict_nparr(), "cast-to": "float", "digits": 4},
}
output_keys = list(output_grids.keys())
cmc_to_crop = {}
is_no_data_row = True
# skip this part if we write just a nodata line
if row in row_col_data:
no_data_cols = ncols
for col in range(0, ncols):
if col in row_col_data[row]:
rcd_val = row_col_data[row][col]
if rcd_val == -9999:
continue
else:
no_data_cols -= 1
cmc_and_year_to_vals = defaultdict(lambda: defaultdict(list))
for cell_data in rcd_val:
# if we got multiple datasets per cell, iterate over them and aggregate them in the following step
for cm_count, data in cell_data.items():
for key in output_keys:
# store mapping cm_count to crop name for later file name creation
if cm_count not in cmc_to_crop and "Crop" in data:
cmc_to_crop[cm_count] = data["Crop"]
# only further process/store data we actually received
if key in data:
v = data[key]
if isinstance(v, list):
for i, v_ in enumerate(v):
cmc_and_year_to_vals[(cm_count, data["Year"])][f'{key}_{i+1}'].append(v_)
else:
cmc_and_year_to_vals[(cm_count, data["Year"])][key].append(v)
# if a key is missing, because that monica event was never raised/reached, create the empty list
# so a no-data value is being produced
else:
cmc_and_year_to_vals[(cm_count, data["Year"])][key]
# potentially aggregate multiple data per cell and finally store them for this row
for (cm_count, year), key_to_vals in cmc_and_year_to_vals.items():
for key, vals in key_to_vals.items():
output_vals = output_grids[key]["data"]
if len(vals) > 0:
output_vals[(cm_count, year)][col] = sum(vals) / len(vals)
else:
output_vals[(cm_count, year)][col] = -9999
is_no_data_row = no_data_cols == ncols
if is_no_data_row:
write_row_to_grids.nodata_row_count[setup_id] += 1
def write_nodata_rows(file_):
for _ in range(write_row_to_grids.nodata_row_count[setup_id]):
rowstr = " ".join(["-9999" for __ in range(ncols)])
file_.write(rowstr + "\n")
# iterate over all prepared data for a single row and write row
for key, y2d_ in output_grids.items():
y2d = y2d_["data"]
cast_to = y2d_["cast-to"]
digits = y2d_.get("digits", 0)
if cast_to == "int":
mold = lambda x: str(int(x))
else:
mold = lambda x: str(round(x, digits))
for (cm_count, year), row_arr in y2d.items():
crop = cmc_to_crop[cm_count] if cm_count in cmc_to_crop else "none"
crop = crop.replace("/", "").replace(" ", "")
path_to_file = path_to_output_dir + crop + "_" + key + "_" + str(year) + "_" + str(cm_count) + ".asc"
if not os.path.isfile(path_to_file):
with open(path_to_file, "w") as _:
_.write(header)
write_row_to_grids.list_of_output_files[setup_id].append(path_to_file)
with open(path_to_file, "a") as file_:
write_nodata_rows(file_)
rowstr = " ".join(["-9999" if int(x) == -9999 else mold(x) for x in row_arr])
file_.write(rowstr + "\n")
# clear the no-data row count when no-data rows have been written before a data row
if not is_no_data_row:
write_row_to_grids.nodata_row_count[setup_id] = 0
# if we're at the end of the output and just empty lines are left, then they won't be written in the
# above manner because there won't be any rows with data where they could be written before
# so add no-data rows simply to all files we've written to before
if is_no_data_row \
and write_row_to_grids.list_of_output_files[setup_id] \
and write_row_to_grids.nodata_row_count[setup_id] > 0:
for path_to_file in write_row_to_grids.list_of_output_files[setup_id]:
with open(path_to_file, "a") as file_:
write_nodata_rows(file_)
write_row_to_grids.nodata_row_count[setup_id] = 0
if row in row_col_data:
del row_col_data[row]
def run_consumer(leave_after_finished_run = True, server = {"server": None, "port": None}, shared_id = None):
"collect data from workers"
config = {
"mode": "mbm-local-remote", ## remote "mbm-local-remote", local "cj-local-remote"
"port": server["port"] if server["port"] else "7777", ## local 7778, remote 7777
"server": server["server"] if server["server"] else "login01.cluster.zalf.de",
"start-row": "0",
"end-row": "-1",
"shared_id": shared_id,
"timeout": 600000 # 10 minutes
}
if len(sys.argv) > 1 and __name__ == "__main__":
for arg in sys.argv[1:]:
k,v = arg.split("=")
if k in config:
config[k] = v
paths = PATHS[config["mode"]]
if not "out" in config:
config["out"] = paths["path-to-output-dir"]
if not "csv-out" in config:
config["csv-out"] = paths["path-to-csv-output-dir"]
print("consumer config:", config)
context = zmq.Context()
if config["shared_id"]:
socket = context.socket(zmq.DEALER)
socket.setsockopt(zmq.IDENTITY, config["shared_id"])
else:
socket = context.socket(zmq.PULL)
socket.connect("tcp://" + config["server"] + ":" + config["port"])
socket.RCVTIMEO = config["timeout"]
leave = False
write_normal_output_files = False
path_to_soil_grid = TEMPLATE_SOIL_PATH.format(local_path_to_data_dir=paths["path-to-data-dir"])
soil_epsg_code = int(path_to_soil_grid.split("/")[-1].split("_")[2])
soil_crs = CRS.from_epsg(soil_epsg_code)
soil_metadata, header = Mrunlib.read_header(path_to_soil_grid)
soil_grid_template = np.loadtxt(path_to_soil_grid, dtype=int, skiprows=6)
scols = int(soil_metadata["ncols"])
srows = int(soil_metadata["nrows"])
scellsize = int(soil_metadata["cellsize"])
xllcorner = int(soil_metadata["xllcorner"])
yllcorner = int(soil_metadata["yllcorner"])
nodata_value = int(soil_metadata["nodata_value"])
if USE_LANDUSE:
path_to_landuse_grid = TEMPLATE_LANDUSE_PATH.format(local_path_to_data_dir=paths["path-to-data-dir"])
landuse_epsg_code = int(path_to_landuse_grid.split("/")[-1].split("_")[2])
landuse_crs = CRS.from_epsg(landuse_epsg_code)
landuse_transformer = Transformer.from_crs(soil_crs, landuse_crs)
landuse_meta, _ = Mrunlib.read_header(path_to_landuse_grid)
landuse_grid = np.loadtxt(path_to_landuse_grid, dtype=int, skiprows=6)
landuse_interpolate = Mrunlib.create_ascii_grid_interpolator(landuse_grid, landuse_meta)
for srow in range(0, srows):
#print(srow)
for scol in range(0, scols):
soil_id = soil_grid_template[srow, scol]
if soil_id == -9999:
continue
#get coordinate of clostest climate element of real soil-cell
sh = yllcorner + (scellsize / 2) + (srows - srow - 1) * scellsize
sr = xllcorner + (scellsize / 2) + scol * scellsize
# check if current grid cell is used for agriculture
lur, luh = landuse_transformer(sh, sr)
landuse_id = landuse_interpolate(lur, luh)
if landuse_id not in [2,3,4]:
soil_grid_template[srow, scol] = -9999
print("filtered through CORINE")
#set all data values to one, to count them later
soil_grid_template[soil_grid_template != nodata_value] = 1
#set all no-data values to 0, to ignore them while counting
soil_grid_template[soil_grid_template == nodata_value] = 0
#count cols in rows
datacells_per_row = np.sum(soil_grid_template, axis=1)
start_row = int(config["start-row"])
end_row = int(config["end-row"])
ncols = int(soil_metadata["ncols"])
setup_id_to_data = defaultdict(lambda: {
"start_row": start_row,
"end_row": end_row,
"nrows": end_row - start_row + 1 if start_row > 0 and end_row >= start_row else int(soil_metadata["nrows"]),
"ncols": ncols,
"header": header,
"out_dir_exists": False,
"row-col-data": defaultdict(lambda: defaultdict(list)),
"datacell-count": datacells_per_row.copy(),
"next-row": start_row
})
def process_message(msg):
if len(msg["errors"]) > 0:
print("There were errors in message:", msg, "\nSkipping message!")
return
if not hasattr(process_message, "wnof_count"):
process_message.wnof_count = 0
process_message.setup_count = 0
leave = False
if not write_normal_output_files and not msg["customId"]["bgr"]:
custom_id = msg["customId"]
setup_id = custom_id["setup_id"]
is_bgr = custom_id["bgr"]
is_yields = custom_id["yields"]
is_nodata = custom_id["nodata"]
is_pheno = custom_id["pheno"]
data = setup_id_to_data[setup_id]
row = custom_id["srow"]
col = custom_id["scol"]
#crow = custom_id.get("crow", -1)
#ccol = custom_id.get("ccol", -1)
#soil_id = custom_id.get("soil_id", -1)
debug_msg = "received work result " + str(process_message.received_env_count) + " customId: " + str(msg.get("customId", "")) \
+ " next row: " + str(data["next-row"]) \
+ " cols@row to go: " + str(data["datacell-count"][row]) + "@" + str(row) + " cells_per_row: " + str(datacells_per_row[row])#\
#+ " rows unwritten: " + str(data["row-col-data"].keys())
print(debug_msg)
#debug_file.write(debug_msg + "\n")
if is_nodata:
data["row-col-data"][row][col] = -9999
else:
data["row-col-data"][row][col].append(create_output(msg))
data["datacell-count"][row] -= 1
process_message.received_env_count = process_message.received_env_count + 1
while (data["next-row"] in data["row-col-data"] and data["datacell-count"][data["next-row"]] == 0) \
or (len(data["datacell-count"]) > data["next-row"] and data["datacell-count"][data["next-row"]] == 0):
path_to_out_dir = config["out"] + str(setup_id) + "/"
path_to_csv_out_dir = config["csv-out"] + str(setup_id) + "/"
print(path_to_out_dir)
if not data["out_dir_exists"]:
if os.path.isdir(path_to_out_dir) and os.path.exists(path_to_out_dir):
data["out_dir_exists"] = True
else:
try:
os.makedirs(path_to_out_dir)
data["out_dir_exists"] = True
except OSError:
print("c: Couldn't create dir:", path_to_out_dir, "! Exiting.")
exit(1)
if os.path.isdir(path_to_csv_out_dir) and os.path.exists(path_to_csv_out_dir):
data["out_dir_exists"] = True
else:
try:
os.makedirs(path_to_csv_out_dir)
data["out_dir_exists"] = True
except OSError:
print("c: Couldn't create dir:", path_to_csv_out_dir, "! Exiting.")
exit(1)
write_row_to_grids(data["row-col-data"], data["next-row"], data["ncols"], data["header"], \
path_to_out_dir, path_to_csv_out_dir, setup_id, is_bgr, is_yields, is_pheno)
debug_msg = "wrote row: " + str(data["next-row"]) + " next-row: " + str(data["next-row"]+1) + " rows unwritten: " + str(list(data["row-col-data"].keys()))
print(debug_msg)
#debug_file.write(debug_msg + "\n")
data["next-row"] += 1 # move to next row (to be written)
if leave_after_finished_run \
and ((data["end_row"] < 0 and data["next-row"] > data["nrows"]-1) \
or (data["end_row"] >= 0 and data["next-row"] > data["end_row"])):
process_message.setup_count += 1
elif write_normal_output_files or msg["customId"]["bgr"]:
if msg.get("type", "") in ["jobs-per-cell", "no-data", "setup_data"]:
#print "ignoring", result.get("type", "")
return
print("received work result ", process_message.received_env_count, " customId: ", str(msg.get("customId", "")))
custom_id = msg["customId"]
setup_id = custom_id["setup_id"]
row = custom_id["srow"]
col = custom_id["scol"]
#crow = custom_id.get("crow", -1)
#ccol = custom_id.get("ccol", -1)
#soil_id = custom_id.get("soil_id", -1)
process_message.wnof_count += 1
path_to_out_dir = config["out"] + str(setup_id) + "/" + str(row) + "/"
print(path_to_out_dir)
if not os.path.exists(path_to_out_dir):
try:
os.makedirs(path_to_out_dir)
except OSError:
print("c: Couldn't create dir:", path_to_out_dir, "! Exiting.")
exit(1)
#with open("out/out-" + str(i) + ".csv", 'wb') as _:
with open(path_to_out_dir + "col-" + str(col) + ".csv", "w", newline='') as _:
writer = csv.writer(_, delimiter=",")
for data_ in msg.get("data", []):
results = data_.get("results", [])
orig_spec = data_.get("origSpec", "")
output_ids = data_.get("outputIds", [])
if len(results) > 0:
writer.writerow([orig_spec.replace("\"", "")])
for row in monica_io3.write_output_header_rows(output_ids,
include_header_row=True,
include_units_row=True,
include_time_agg=False):
writer.writerow(row)
for row in monica_io3.write_output(output_ids, results):
writer.writerow(row)
writer.writerow([])
process_message.received_env_count = process_message.received_env_count + 1
return leave
process_message.received_env_count = 1
while not leave:
try:
#start_time_recv = timeit.default_timer()
msg = socket.recv_json() #encoding="latin-1"
#elapsed = timeit.default_timer() - start_time_recv
#print("time to receive message" + str(elapsed))
#start_time_proc = timeit.default_timer()
leave = process_message(msg)
#elapsed = timeit.default_timer() - start_time_proc
#print("time to process message" + str(elapsed))
except zmq.error.Again as _e:
print('no response from the server (with "timeout"=%d ms) ' % socket.RCVTIMEO)
return
except Exception as e:
print("Exception:", e)
#continue
print("exiting run_consumer()")
#debug_file.close()
if __name__ == "__main__":
run_consumer()