Skip to content

Latest commit

 

History

History
54 lines (51 loc) · 1.91 KB

TODO.md

File metadata and controls

54 lines (51 loc) · 1.91 KB

TODO

Overall

  • Research research strategies
  • Email EIT for download exemption
  • Download http://horatio.cs.nyu.edu/mit/tompson/nyu_hand_dataset_v2.zip
  • Clone https://github.com/jsupancic/deep_hand_pose and run some code
  • Reimplement Deep Hand Pose in TensorFlow
    • Build the graph structure
      • Read the graph protobuffer format, understand the graph layers & vector input/output shapes, document
      • Translate graph into Keras graph
      • Run and debug Keras graph
    • Convert the NYU dataset to something TensorFlow can read
      • Look at converting .png to TensorFlow vectors (TFRecord files?)
      • Figure out how to add images to .npz file individually
      • Read labels and understand/document their format
      • Write script to convert the NYU dataset into a single HDF5 archive
  • Make a short slideshow
    • Overview/background of project
    • Problem statement (inputs, outputs, process)
    • Goals (mobile, non-depth)
  • Write a paper draft
    • Synthesize information from slideshow
    • Collect sources
    • Document research process
    • Work on a journal / log
    • Report on preliminary results (if any)
  • Experiment with improvements
    • Augment data with scales and translations
      • Refactor for performance
    • Add label depths
    • Add batch normalization
    • Use autoencoder instead of PCA
    • Try more PCA components
    • Use striding instead of max pooling
    • Change number of filters
    • Change batch size
    • Change depth of network
    • Change neurons in fully connected layers
  • Work on mobile port
  • Document and publish
    • Create a GitHub page
    • Generate results graphs
    • Add model comparisons
    • Start results section
    • Add installation documentation
    • Add 'why' to code documentation

This week

  • Try more PCA components
  • Change batch size
  • Start results section
  • Add model comparisons