-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
92 lines (69 loc) · 2.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%config InlineBackend.figure_format = 'retina'
import seaborn as sns
sns.set_theme('paper', style='darkgrid')
import warnings
warnings.filterwarnings("ignore")
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_absolute_error
from matplotlib.offsetbox import AnchoredText
from scipy.stats import pearsonr
import statsmodels.api as sm
from sklearn.ensemble import RandomForestRegressor
from algorithms.exploratory_analysis import ExploratoryAnalysis
from algorithms.mle import MLE
from algorithms.vi import VariationalInference
from algorithms.hmc import Hamiltonian
from algorithms.gp import GaussianProcess, BNN
def import_data(path_train, path_test):
train = pd.read_csv(path_train)
test = pd.read_csv(path_test)
# Apply normalization
ss = StandardScaler()
train_ss = pd.DataFrame(ss.fit_transform(train), columns=train.columns)
test_ss = pd.DataFrame(ss.transform(test), columns=train.columns)
# Reset the const col
train_ss['const'] = 1
test_ss['const'] = 1
X_train = train_ss.drop('Heating Load', axis=1).values
y_train = train['Heating Load'].values
X_test = test_ss.drop('Heating Load', axis=1).values
y_test = test['Heating Load'].values
ExploratoryAnalysis.checkup(X_train, y_train)
return X_train, y_train, X_test, y_test
def predictions():
"""Get predictions for all algorithms"""
# Import and Scale the Data
path_train = "data//ee-train.csv"
path_test = "data//ee-test.csv"
X_train, y_train, X_test, y_test = import_data(path_train, path_test)
# Ordinary Least Squares estimation
ExploratoryAnalysis.ols(X_train, y_train, X_test, y_test)
# Random Forest regressor
ExploratoryAnalysis.rf(X_train, y_train, X_test, y_test)
# Maximum-Likelihood Estimation
MLE.get_predictions(X_train, y_train, X_test, y_test)
# Variational Inference
VariationalInference.get_predictions(X_train, y_train, X_test, y_test)
# Hamiltonian Markov Chains
Hamiltonian.get_predictions(X_train, y_train, X_test, y_test)
# Gaussian Processes
GaussianProcess.kernels(X_train, y_train, X_test, y_test)
# Bayesian Neural Network
bnn = BNN.network(X_train)
BNN.inference(X_train, y_train, X_test, bnn)
def plot_posteriors():
"""Plot posterior distribution for all algorithms"""
# Import and Scale the Data
path_train = "data//ee-train.csv"
path_test = "data//ee-test.csv"
X_train, y_train, X_test, y_test = import_data(path_train, path_test)
# Type-II Maximum Likelihood
MLE.plot_posterior(X_train, y_train)
# Variational Inference
VariationalInference.plot_posterior(X_train, y_train)
# Hamiltonian Markov Chains
Hamiltonian.plot_posterior(X_train, y_train)