-
Notifications
You must be signed in to change notification settings - Fork 0
/
ERR_finder.R
489 lines (364 loc) · 23.5 KB
/
ERR_finder.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
library(tidyverse)
library(GenomicRanges)
#Specify tissue-type(s) here
tissue.list <- c("Uterus")
smtsd.list <- c("Uterus")
###########################################################################################
############################ NON-TISSUE SPECIFIC CODE ####################################
############################## NEEDS TO RUN JUST ONCE #####################################
###########################################################################################
#################################################################################################
#################################### Reading in the full file ###################################
#################################################################################################
gtex.samp.attrs <- read_tsv("./ERR-datafiles/v7_eqtl_data/gtex7_sampleAttributes_groomed.txt")
# Separate out the DNA and RNA samples for genotype and RNASeq respectively
#gtex.dna.samples <- gtex.samp.attrs %>% filter(ANALYTE=="DNA")
gtex.dna.samples <- gtex.samp.attrs %>% filter(SMAFRZE=="WGS")
# Add a donor_id column (first two parts of SAMPID) to match with
# genotype data with RNASeq
gtex.dna.samples <- gtex.dna.samples %>%
separate(SAMPID,sep="-",into=c("donor1","donor2","idp3","idp4","idp5","idp6"),remove=F) %>%
unite(donor_id, donor1:donor2, sep="-") %>% dplyr::select(-(idp3:idp6))
#gtex.rna.samples <- gtex.samp.attrs %>% filter(ANALYTE=="RNA")
gtex.rna.samples <- gtex.samp.attrs %>% filter(SMAFRZE=="RNASEQ")
# Add a donor_id column (first two parts of SAMPID) to match with
# RNASeq data with genotype
gtex.rna.samples <- gtex.rna.samples %>%
separate(SAMPID,sep="-",into=c("donor1","donor2","idp3","idp4","idp5","idp6"),remove=F) %>%
unite(donor_id, donor1:donor2, sep="-") %>% dplyr::select(-(idp3:idp6))
###########################################################################################
###########################################################################################
#################################################################################################
###
rnaseq.file <- "./ERR-datafiles/v7_eqtl_data/GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_tpm.gct"
rnaseq.data <- read_tsv(rnaseq.file, skip=2)
gene.names <- rnaseq.data$Description
names(gene.names) <- rnaseq.data$Name
##########################################################################################################
###################################### -ENHANCER AND GENCODE FILE PATH SETTINGS -#########################
##########################################################################################################
enhancer.filePath <- "./ERR-datafiles/combinedEnhancerAnnotations.txt"
gencode.filepath <- "./ERR-datafiles/gencode_info.txt"
#gtex.ase.filepath <- "./gtex_ASE_uterus_head.txt"
##########################################################################################################
###################################### - ENCODE ANNOTATIONS -#############################################
##########################################################################################################
# Read in the gencode gene annotations (previously processed by script 'gencode.r')
gencode.info <- read_tsv(gencode.filepath)
# Get the required info (chromosome name, start and end coordinates, gene ids, and gene names)
# The rows are labelled by gene IDs for easy selection downstream.
gencode.gr <- GRanges(seqnames = gencode.info$Chr,
ranges = IRanges(start = gencode.info$Start,
end = gencode.info$End,
names = gencode.info$ID),
strand = gencode.info$Strand,
gene_id = gencode.info$ID,
gene_name = gencode.info$Name,
annot_type=gencode.info$AnnotType,
evidence=gencode.info$Evidence,
type=gencode.info$Type
)
##########################################################################################################
###################################### - ENHANCER ANNOTATIONS -#############################################
##########################################################################################################
########Enhancer Data
#enhancer.filePath <- "./enhancers_50rows.txt"
#enhancer.filePath <- "./3_Ehnacer.merge.method.txt"
# Read in enhancer coordinate files
enhancers <- read_csv(enhancer.filePath, col_names = F, col_types = "iciic")
names(enhancers) <- c("enhID", "Chr", "Start", "End", "source")
enhancers$enhID <- paste0("enh",enhancers$enhID)
enhancers$Chr <- paste0("chr",enhancers$Chr)
enhancers.gr <- GRanges(seqnames = enhancers$Chr,
ranges = IRanges(start = enhancers$Start,
end = enhancers$End,
names = paste("EN",1:nrow(enhancers),sep="_")),
#strand = "*",
source = enhancers$source
)
#cmnt
## COSMIC gene annotations...read in List of COSMIC genes for checking for genes in cosmic
cosmic.info <- read_tsv("./ERR-datafiles/cosmic_gene_info.txt")
## Also get DO brca and prad annotations
brca.prad.info <- read_tsv("./ERR-datafiles/DO/brca_prad_gene_info.txt")
#unique.enhancers.gr <- unique(enhancers.gr)
######################### END OF NON-TISSUE SPECIFIC CODE #################################
###########################################################################################
###########################################################################################
############################ TISSUE SPECIFIC CODE BEGINS ##################################
###########################################################################################
###########################################################################################
counts.table <- data.frame(Tissue=character(), enhancer_eqtl_counter=numeric(), multiTarget_eqtl_count=numeric(),
all_eqtls_in_promoter_count=numeric(), p_eqtls_count=numeric(), multiGene_pEqtls_count=numeric(),
common_genes_count=numeric(), peqtls_in_commonGenes_count=numeric(), genePairs_oppSlopes_count=numeric(),
geneA_enhancer_count=numeric(), bothGenes_enhancer_count=numeric(), stringsAsFactors = FALSE)
#Can be made to loop over multiple tissues
for(k in 1:length(tissue.list)){
current.tissue <- tissue.list[k]
current.smtsd <- smtsd.list[k]
cat(paste0("--> Current tissue is ",current.tissue,"\n"))
# Extract the sample attributes for RNASeq data
rna.samps.tissue <- filter(gtex.rna.samples, SMTSD == current.smtsd) %>% dplyr::select(SAMPID, donor_id)
# Save the sample IDs
rna.sampids.tissue <- rna.samps.tissue$SAMPID
eqtl.filePath <- paste0("./ERR-datafiles/v7_eqtl_data/",current.tissue,".v7.signif_variant_gene_pairs.txt")
eqtls <- read_tsv(eqtl.filePath,col_types="cci__ddd____")
eqtls <- eqtls %>%
separate(variant_id, c("Chr", "Pos", "Allele1", "Allele2", "del"), convert = T, remove = F) %>%
dplyr::select(-c(del))
###
eqtls.gr <- GRanges(seqnames = paste0("chr",eqtls$Chr),
ranges = IRanges(start = eqtls$Pos,
width = 1)
)
values(eqtls.gr) <- dplyr::select(eqtls, 4:10)
# eQTL id is kept same as the variant id for ease of retrieval later
eqtls.gr$eqtl_id <- eqtls$variant_id
#Limit eQTLs to 200kb to keep interactions within contact domains
dom.eqtls.gr <- eqtls.gr[abs(eqtls.gr$tss_distance)<=200000]
# Make a GrangesList of all eqtls based on the unique eqtl id
eqtls.grList <- split(eqtls.gr, eqtls.gr$eqtl_id)
# Make a shorter list of eqtls that have at least 2 targets
multiTarget.eqtls.grList <- eqtls.grList[lapply(eqtls.grList, length) > 1] #keepCount
multiTarget.eqtl.ids <- names(multiTarget.eqtls.grList)
#counter
multitarget.eqtl.counter <- length(multiTarget.eqtls.grList)
#############################################
###############################################################################################
############################ eQTLs occuring within Enhancers ##################################
###############################################################################################
#countThis
enhancer.hits <- findOverlaps(eqtls.gr, enhancers.gr)
eqtls.in.enhancers <- eqtls.gr[queryHits(enhancer.hits)]
eqtls.in.enhancers$enhancer_id <- names(enhancers.gr)[subjectHits(enhancer.hits)]
eqtls.in.enhancers$enhancer_start <- start(enhancers.gr)[subjectHits(enhancer.hits)]
eqtls.in.enhancers$enhancer_end <- end(enhancers.gr)[subjectHits(enhancer.hits)] #keepCount
#counter
enhancer.eqtl.counter <- length(eqtls.in.enhancers)
# Also make a GrangesList grouped by enhancer ID #### restart from here
enhancer.eqtls.grList <- split(eqtls.in.enhancers, eqtls.in.enhancers$enhancer_id)
#multiTarget.enhancers.grList <- enhancer.eqtls.grList[lapply(enhancer.eqtls.grList, length) > 1]
multiTarget.enhancers.grList <- enhancer.eqtls.grList[lapply(enhancer.eqtls.grList, length) > 1]
###############################################################################################
###############################################################################################
############################ eQTLs occuring within Promoters ##################################
###############################################################################################
# Narrow down the search by looking only at genes that are targetted by eQTLs in
# both Enhancer and promoter regions.
# Get a genomic ranges object for promoter ranges from gencode
# This returns eqtls that don't necessarily target genes targeted by promoter
promoters.gr <- promoters(gencode.gr, downstream = 1000)
promoter.hits <- findOverlaps(eqtls.gr, promoters.gr)
all.eqtls.in.promoters <- eqtls.gr[queryHits(promoter.hits)] #keepCount
#counter
all.eqtls.in.promoter.counter <- length(all.eqtls.in.promoters)
# Subset promoter eQTLs that target the gene itself
eqtls.in.promoters <- GRanges()
for(i in 1:length(all.eqtls.in.promoters)){
current.eqtl <- all.eqtls.in.promoters[i]
location <- start(current.eqtl)
target.promoter <- promoters(gencode.gr[current.eqtl$gene_id], downstream=1000)
if((location >= start(target.promoter)) & (location <= end(target.promoter))){
eqtls.in.promoters <- c(eqtls.in.promoters, current.eqtl) #keepCount
}
}
#counter
p.eqtls.counter <- length(eqtls.in.promoters)
#counter
multiGene.p.eqtls.counter <-intersect(all.eqtls.in.promoters$eqtl_id,multiTarget.eqtl.ids)
# Get a list of genes targeted by both enhancer and promoter eQTLs
common.genes <- intersect(eqtls.in.enhancers$gene_id, eqtls.in.promoters$gene_id) #keepCount
#counter
common.genes.counter <- length(common.genes)
common.promoter.eqtls <- eqtls.in.promoters[eqtls.in.promoters$gene_id %in% common.genes] #keepCount
#counter
peqtls.in.common.genes.counter <- length(common.promoter.eqtls)
###############################################################################################
promoter.eqtl.targetPairs <- GRanges()
#common.enhancer.eqtls <- GRangesList()
common.enhancer.eqtls <- list()
pair_counter <- 0
#counter
genepairs.oppSlopes.counter <- 0 #302
#counter
geneA.enhancer.counter <- 0
#counter
bothGenes.enhancer.counter <- 0
for(i in 1:length(common.promoter.eqtls)){
#for(i in 275:300){
#Find other targets of each eQTL
current.eqtl <- common.promoter.eqtls[i]
current.target <- current.eqtl$gene_id
current.slope <- current.eqtl$slope
if(current.eqtl$eqtl_id %in% multiTarget.eqtl.ids){
all.targets <- multiTarget.eqtls.grList[[current.eqtl$eqtl_id]]
all.targets <- all.targets[-which(all.targets$gene_id %in% current.target)]
for(j in 1:length(all.targets)){
current.alt <- all.targets[j] # <-The eqtl for the possible alternate target
current.genedist <- abs(start(gencode.gr[current.target]) - start(gencode.gr[current.alt$gene_id]))
#Check if other gene has opposite slope
if((current.slope/current.alt$slope < 0) & (current.genedist >=5000)){
#counter
genepairs.oppSlopes.counter <- genepairs.oppSlopes.counter + 1
# ## Check if current gene is in COSMIC
# if(current.target %in% cosmic.info$gene_id) {
# current.eqtl$geneA_inCOSMIC <- 1
# } else {current.eqtl$geneA_inCOSMIC <- 0}
# ####
# ## Check if current gene is in DO
# if(current.target %in% brca.prad.info$gene_id) {
# cancer_type <- brca.prad.info$cancerType[brca.prad.info$gene_id %in% current.target]
# if(length(cancer_type)>1){current.eqtl$geneA_inDO <- "both"}
# else{current.eqtl$geneA_inDO <- cancer_type}
# } else {current.eqtl$geneA_inDO <- NA}
####
# Save eqtl details for alternate target gene
current.eqtl$alt_target_id <- current.alt$gene_id
current.eqtl$alt_tss_distance <- current.alt$tss_distance
current.eqtl$alt_pvalue <- current.alt$pval_nominal
current.eqtl$alt_slope <- current.alt$slope
# ## Check if alternate gene is in COSMIC
# if(current.alt$gene_id %in% cosmic.info$gene_id) {
# current.eqtl$geneB_inCOSMIC <- 1
# } else {current.eqtl$geneB_inCOSMIC <- 0}
# ###
# ## Check if alternate gene is in DO
# if(current.alt$gene_id %in% brca.prad.info$gene_id) {
# cancer_type <- brca.prad.info$cancerType[brca.prad.info$gene_id %in% current.alt$gene_id]
# if(length(cancer_type)>1){current.eqtl$geneB_inDO <- "both"}
# else{current.eqtl$geneB_inDO <- cancer_type}
#
# } else {current.eqtl$geneB_inDO <- NA}
####
# Assign a pair_id for cross referencing with enhancers
pair_counter <- pair_counter + 1
current.eqtl$pair_id <- paste("pair", pair_counter, sep="_")
current.eqtl$common_enhancer <- "no"
#promoter.eqtl.targetPairs <- c(promoter.eqtl.targetPairs, current.eqtl)
# Check if any enhancers regulating target gene also regulates alternate target
target.enhancer.list <- unique(eqtls.in.enhancers[eqtls.in.enhancers$gene_id %in% current.target]$enhancer_id)
# For each enhancer, see if both genes are targeted
target.pair <- c(current.target, current.alt$gene_id) #Changed this vector to include both genes
shared.enhancer.counter <- 0
geneA.enhancer.counter <- 0
common.enhancer.sublist <- GRangesList()
for(k in 1:length(target.enhancer.list)){
current.enhancer <- target.enhancer.list[k]
enhancer.target.eqtls <- multiTarget.enhancers.grList[[current.enhancer]]
enhancer.target.list <- unique(enhancer.target.eqtls$gene_id)
##################################################
## Added to annotate enhancer link to geneA, both or none
#To begin, set common_enhancer variable to "none"
current.eqtl$common_enhancer <- "none"
if(target.pair[1] %in% enhancer.target.list){
geneA.enhancer.counter <- geneA.enhancer.counter + 1
current.eqtl$common_enhancer <- "geneA_only"
geneA.enhancer.counter <- geneA.enhancer.counter + 1
common.enhancer.sublist[[current.enhancer]] <-
enhancer.target.eqtls[which(enhancer.target.eqtls$gene_id %in% target.pair[1])]
}
##################################################
if(sum(target.pair %in% enhancer.target.list)==2){
shared.enhancer.counter <- shared.enhancer.counter + 1
# Change common_enhancer value to "yes"
#current.eqtl$common_enhancer <- "yes"
current.eqtl$common_enhancer <- "both_genes"
##############
#counter
geneA.enhancer.counter <- geneA.enhancer.counter - 1
if(geneA.enhancer.counter <= 0) {geneA.enhancer.counter <- 0}
bothGenes.enhancer.counter <- bothGenes.enhancer.counter + 1
##############
#enhancer.pair.id <- paste(current.eqtl$pair_id, paste0("enh",shared.enhancer.counter),sep="_")
common.enhancer.sublist[[current.enhancer]] <-
enhancer.target.eqtls[which(enhancer.target.eqtls$gene_id %in% target.pair)]
}#common enhancer if loop end
}#alt target if block end
current.eqtl$no_shared_enhancers <- shared.enhancer.counter
current.eqtl$no_geneA_enhancers <- geneA.enhancer.counter
promoter.eqtl.targetPairs <- c(promoter.eqtl.targetPairs, current.eqtl)
common.enhancer.eqtls[[current.eqtl$pair_id]] <- common.enhancer.sublist
}#Check for opposite slopes if block end
}#For all targets of promoter eqtl end
}#Multi-target eqtl if block end
}#Promoter eqtl loop end
#### Adding Information about the Slope, etc
#Get only the genes we are interested in for this tissue type
gene.subset.list <- unique(c(promoter.eqtl.targetPairs$gene_id, promoter.eqtl.targetPairs$alt_target_id))
gene.subset.inds <- which(rnaseq.data$Name %in% gene.subset.list)
tissue.rnaseq <- rnaseq.data %>% dplyr::select(one_of(rna.sampids.tissue))
tissue.rnaseq <- tissue.rnaseq[gene.subset.inds,]
tissue.rnaseq <- as_tibble(t(tissue.rnaseq))
names(tissue.rnaseq) <- as.character(names(gene.names[gene.subset.inds]))
####################################################################################
#### Adding Information about the Slope
expr.corr <- numeric(length(promoter.eqtl.targetPairs))
for(i in 1:length(promoter.eqtl.targetPairs)){
paired.eqtls <- promoter.eqtl.targetPairs[i]
pro.gene <- paired.eqtls$gene_id
alt.gene <- paired.eqtls$alt_target_id
expr.corr[i] <- cor(tissue.rnaseq[,pro.gene],tissue.rnaseq[,alt.gene])
promoter.eqtl.targetPairs$rnaseq_corr <- expr.corr
}
####################################################################################
################# ADDING INDIVIDUAL E-EQTLs TO EACH ROW OF PAIR ####################
####################################################################################
results.table <- data.frame(pair_id=character(),geneA_id=character(),geneA_name=character(),
geneB_id=character(), geneB_name=character(),
rnaseq_corr=numeric(),
geneA_COSMIC=numeric(),geneA_DO=character(),
geneB_COSMIC=numeric(),geneB_DO=character(),
peqtl_id=character(), gtex_maf=numeric(),#peqtl_rsid=character(),peqtl_CADD_score=numeric(),
peqtl_slopeA=numeric(), peqtl_pvalueA=numeric(),peqtl_tss_dist_A=numeric(),
peqtl_slopeB=numeric(), peqtl_pvalueB=numeric(),peqtl_tss_dist_B=numeric(),
no_shared_enhancers=numeric(),no_geneA_enhancers=numeric(),enhancer_id=character(),e_eqtl_geneA=character(),stringsAsFactors = FALSE)
#e_eqtl_geneB=character(),stringsAsFactors = FALSE)
for(i in 1:length(promoter.eqtl.targetPairs)){
current.pair <- promoter.eqtl.targetPairs[i]
current.geneA <- current.pair$gene_id
current.geneB <- current.pair$alt_target_id
current.common.enhancers <- common.enhancer.eqtls[[current.pair$pair_id]]
for(each.enhancer in names(current.common.enhancers)){
which.geneA <- which(current.common.enhancers[[each.enhancer]]$gene_id %in% current.geneA)
geneA.e_eqtls <- current.common.enhancers[[each.enhancer]][which.geneA]
selected.geneA.e_eqtl <- geneA.e_eqtls[which.min(geneA.e_eqtls$pval_nominal)]
# which.geneB <- which(current.common.enhancers[[each.enhancer]]$gene_id %in% current.geneB)
# geneB.e_eqtls <- current.common.enhancers[[each.enhancer]][which.geneB]
# selected.geneB.e_eqtl <- geneB.e_eqtls[which.min(geneB.e_eqtls$pval_nominal)]
# Arrange the information for pEQTL in the preferred order for table (see later for column names)
results.table <- results.table %>%
add_row(pair_id=current.pair$pair_id, geneA_id=current.geneA, geneA_name=gencode.info$Name[gencode.info$ID %in% current.geneA],
geneB_id=current.geneB, geneB_name=gencode.info$Name[gencode.info$ID %in% current.geneB],
rnaseq_corr=current.pair$rnaseq_corr,
geneA_COSMIC=current.pair$geneA_inCOSMIC, geneA_DO=current.pair$geneA_inDO,
geneB_COSMIC=current.pair$geneB_inCOSMIC, geneB_DO=current.pair$geneB_inDO,
peqtl_id=current.pair$eqtl_id, gtex_maf=current.pair$maf,#peqtl_rsid=current.pair$pEQTL_rsid, peqtl_CADD_score=current.pair$cadd_scores,
peqtl_slopeA=current.pair$slope, peqtl_pvalueA=current.pair$pval_nominal, peqtl_tss_dist_A=current.pair$tss_distance,
peqtl_slopeB=current.pair$alt_slope, peqtl_pvalueB=current.pair$alt_pvalue, peqtl_tss_dist_B=current.pair$alt_tss_distance,
no_shared_enhancers=current.pair$no_shared_enhancers,no_geneA_enhancers=current.pair$no_geneA_enhancers,enhancer_id=each.enhancer, e_eqtl_geneA=selected.geneA.e_eqtl$eqtl_id)#, e_eqtl_geneB=selected.geneB.e_eqtl$eqtl_id)
}
}
results.table <- tbl_df(results.table)
####################################################################################
####################################################################################
## Create a output directory for the tissue in "outputFiles" with the tissue name
dir.create(paste0("./output/",current.tissue))
output.filename <- paste0("./output/",current.tissue,"/",current.tissue,
"_allPE_eqtlTargetPairs_commonEnhancers.Rdat")
result.filename <- paste0("./output/",current.tissue,"/",current.tissue,
"_allPE_eqtlTargetPairs_commonEnhancers_Table.txt")
save(common.enhancer.eqtls, promoter.eqtl.targetPairs, file=output.filename)
write_tsv(results.table, result.filename)
####################################################################################
########################### COUNTS TABLE FOR OUTPUT ###############################
####################################################################################
counts.table <- counts.table %>%
add_row(Tissue=current.tissue, enhancer_eqtl_counter=enhancer.eqtl.counter, multiTarget_eqtl_count=multitarget.eqtl.counter,
all_eqtls_in_promoter_count=all.eqtls.in.promoter.counter, p_eqtls_count=p.eqtls.counter, multiGene_pEqtls_count=multiGene.p.eqtls.counter,
common_genes_count=common.genes.counter, peqtls_in_commonGenes_count=peqtls.in.common.genes.counter, genePairs_oppSlopes_count=genepairs.oppSlopes.counter,
geneA_enhancer_count=geneA.enhancer.counter, bothGenes_enhancer_count=bothGenes.enhancer.counter)
output.filename <- paste0("./",current.tissue,"_countsTable_results.txt")
####################################################################################
####################################################################################
write_tsv(counts.table, output.filename)
}