Given a non-empty array nums
containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
Example 1:
Input: nums = [1,5,11,5] Output: true Explanation: The array can be partitioned as [1, 5, 5] and [11].
Example 2:
Input: nums = [1,2,3,5] Output: false Explanation: The array cannot be partitioned into equal sum subsets.
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 100
Dynamic programming. It is similar to the 0-1 Knapsack problem.
class Solution:
def canPartition(self, nums: List[int]) -> bool:
s = sum(nums)
if s % 2 != 0:
return False
m, n = len(nums), s >> 1
dp = [[False] * (n + 1) for _ in range(m + 1)]
dp[0][0] = True
for i in range(1, m + 1):
for j in range(n + 1):
dp[i][j] = dp[i - 1][j]
if not dp[i][j] and nums[i - 1] <= j:
dp[i][j] = dp[i - 1][j - nums[i - 1]]
return dp[-1][-1]
class Solution:
def canPartition(self, nums: List[int]) -> bool:
s = sum(nums)
if s % 2 != 0:
return False
n = s >> 1
dp = [False] * (n + 1)
dp[0] = True
for v in nums:
for j in range(n, v - 1, -1):
dp[j] = dp[j] or dp[j - v]
return dp[-1]
class Solution:
def canPartition(self, nums: List[int]) -> bool:
s = sum(nums)
if s % 2 != 0:
return False
target = s >> 1
@cache
def dfs(i, s):
nonlocal target
if s > target or i >= len(nums):
return False
if s == target:
return True
return dfs(i + 1, s) or dfs(i + 1, s + nums[i])
return dfs(0, 0)
class Solution {
public boolean canPartition(int[] nums) {
int s = 0;
for (int v : nums) {
s += v;
}
if (s % 2 != 0) {
return false;
}
int m = nums.length;
int n = s >> 1;
boolean[][] dp = new boolean[m + 1][n + 1];
dp[0][0] = true;
for (int i = 1; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
dp[i][j] = dp[i - 1][j];
if (!dp[i][j] && nums[i - 1] <= j) {
dp[i][j] = dp[i - 1][j - nums[i - 1]];
}
}
}
return dp[m][n];
}
}
class Solution {
public boolean canPartition(int[] nums) {
int s = 0;
for (int v : nums) {
s += v;
}
if (s % 2 != 0) {
return false;
}
int n = s >> 1;
boolean[] dp = new boolean[n + 1];
dp[0] = true;
for (int v : nums) {
for (int j = n; j >= v; --j) {
dp[j] = dp[j] || dp[j - v];
}
}
return dp[n];
}
}
class Solution {
public:
bool canPartition(vector<int>& nums) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s % 2 != 0) return false;
int m = nums.size(), n = s >> 1;
vector<vector<bool>> dp(m + 1, vector<bool>(n + 1));
dp[0][0] = true;
for (int i = 1; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
dp[i][j] = dp[i - 1][j];
if (!dp[i][j] && nums[i - 1] <= j) dp[i][j] = dp[i - 1][j - nums[i - 1]];
}
}
return dp[m][n];
}
};
class Solution {
public:
bool canPartition(vector<int>& nums) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s % 2 != 0) return false;
int n = s >> 1;
vector<bool> dp(n + 1);
dp[0] = true;
for (int& v : nums)
for (int j = n; j >= v; --j)
dp[j] = dp[j] || dp[j - v];
return dp[n];
}
};
func canPartition(nums []int) bool {
s := 0
for _, v := range nums {
s += v
}
if s%2 != 0 {
return false
}
m, n := len(nums), s>>1
dp := make([][]bool, m+1)
for i := range dp {
dp[i] = make([]bool, n+1)
}
dp[0][0] = true
for i := 1; i <= m; i++ {
for j := 0; j < n; j++ {
dp[i][j] = dp[i-1][j]
if !dp[i][j] && nums[i-1] <= j {
dp[i][j] = dp[i-1][j-nums[i-1]]
}
}
}
return dp[m][n]
}
func canPartition(nums []int) bool {
s := 0
for _, v := range nums {
s += v
}
if s%2 != 0 {
return false
}
n := s >> 1
dp := make([]bool, n+1)
dp[0] = true
for _, v := range nums {
for j := n; j >= v; j-- {
dp[j] = dp[j] || dp[j-v]
}
}
return dp[n]
}
/**
* @param {number[]} nums
* @return {boolean}
*/
var canPartition = function (nums) {
let s = 0;
for (let v of nums) {
s += v;
}
if (s % 2 != 0) {
return false;
}
const m = nums.length;
const n = s >> 1;
const dp = new Array(n + 1).fill(false);
dp[0] = true;
for (let i = 1; i <= m; ++i) {
for (let j = n; j >= nums[i - 1]; --j) {
dp[j] = dp[j] || dp[j - nums[i - 1]];
}
}
return dp[n];
};