Skip to content

Latest commit

 

History

History
256 lines (208 loc) · 7.32 KB

File metadata and controls

256 lines (208 loc) · 7.32 KB

English Version

题目描述

给定一个整数数组 arr,找到 min(b) 的总和,其中 b 的范围为 arr 的每个(连续)子数组。

由于答案可能很大,因此 返回答案模 10^9 + 7

 

示例 1:

输入:arr = [3,1,2,4]
输出:17
解释:
子数组为 [3],[1],[2],[4],[3,1],[1,2],[2,4],[3,1,2],[1,2,4],[3,1,2,4]。 
最小值为 3,1,2,4,1,1,2,1,1,1,和为 17。

示例 2:

输入:arr = [11,81,94,43,3]
输出:444

 

提示:

  • 1 <= arr.length <= 3 * 104
  • 1 <= arr[i] <= 3 * 104

 

解法

方法一:单调栈

题目要求的是每个子数组的最小值之和,实际上相当于,对于每个元素 $arr[i]$,求以 $arr[i]$ 为最小值的子数组的个数,然后乘以 $arr[i]$,最后求和。

因此,题目的重点转换为:求以 $arr[i]$ 为最小值的子数组的个数。对于 $arr[i]$,我们找出其左边第一个小于 $arr[i]$ 的位置 $left[i]$,右侧第一个小于等于 $arr[i]$ 的位置 $right[i]$,则以 $arr[i]$ 为最小值的子数组的个数为 $(i - left[i]) \times (right[i] - i)$

注意,这里为什么要求右侧第一个小于等于 $arr[i]$ 的位置 $right[i]$,而不是小于 $arr[i]$ 的位置呢?这是因为,如果是右侧第一个小于 $arr[i]$ 的位置 $right[i]$,则会导致重复计算。

我们可以举个例子来说明,对于以下数组:

下标为 $3$ 的元素大小为 $2$,左侧第一个小于 $2$ 的元素下标为 $0$,如果我们求右侧第一个小于 $2$ 的元素下标,可以得到下标为 $7$。也即是说,子数组区间为 $(0, 7)$。注意,这里是开区间。

0 4 3 2 5 3 2 1
*     ^       *

按照同样的方法,我们可以求出下标为 $6$ 的元素的子数组区间,可以发现,其子数组区间也为 $(0, 7)$,也即是说,下标为 $3$ 和下标为 $6$ 的元素的子数组区间是重复的。这样就造成了重复计算。

0 4 3 2 5 3 2 1
*           ^ *

如果我们求的是右侧第一个小于等于其值的下标,就不会有重复问题,因为下标为 $3$ 的子数组区间变为 $(0, 6)$,下标为 $6$ 的子数组区间为 $(0, 7)$,两者不重复。

回到这道题上,我们只需要遍历数组,对于每个元素 $arr[i]$,利用单调栈求出其左侧第一个小于 $arr[i]$ 的位置 $left[i]$,右侧第一个小于等于 $arr[i]$ 的位置 $right[i]$,则以 $arr[i]$ 为最小值的子数组的个数为 $(i - left[i]) \times (right[i] - i)$,然后乘以 $arr[i]$,最后求和即可。

注意数据的溢出以及取模操作。

时间复杂度 $O(n)$,其中 $n$ 表示数组 $arr$ 的长度。

Python3

class Solution:
    def sumSubarrayMins(self, arr: List[int]) -> int:
        n = len(arr)
        left = [-1] * n
        right = [n] * n
        stk = []
        for i, v in enumerate(arr):
            while stk and arr[stk[-1]] >= v:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)

        stk = []
        for i in range(n - 1, -1, -1):
            while stk and arr[stk[-1]] > arr[i]:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)
        mod = 10**9 + 7
        return sum((i - left[i]) * (right[i] - i) * v for i, v in enumerate(arr)) % mod

Java

class Solution {
    public int sumSubarrayMins(int[] arr) {
        int n = arr.length;
        int[] left = new int[n];
        int[] right = new int[n];
        Arrays.fill(left, -1);
        Arrays.fill(right, n);
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = 0; i < n; ++i) {
            while (!stk.isEmpty() && arr[stk.peek()] >= arr[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                left[i] = stk.peek();
            }
            stk.push(i);
        }
        stk.clear();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && arr[stk.peek()] > arr[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                right[i] = stk.peek();
            }
            stk.push(i);
        }
        int mod = (int) 1e9 + 7;
        long ans = 0;
        for (int i = 0; i < n; ++i) {
            ans += (long) (i - left[i]) * (right[i] - i) % mod * arr[i] % mod;
            ans %= mod;
        }
        return (int) ans;
    }
}

C++

using ll = long long;
const int mod = 1e9 + 7;

class Solution {
public:
    int sumSubarrayMins(vector<int>& arr) {
        int n = arr.size();
        vector<int> left(n, -1);
        vector<int> right(n, n);
        stack<int> stk;
        for (int i = 0; i < n; ++i) {
            while (!stk.empty() && arr[stk.top()] >= arr[i]) stk.pop();
            if (!stk.empty()) left[i] = stk.top();
            stk.push(i);
        }
        stk = stack<int>();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.empty() && arr[stk.top()] > arr[i]) stk.pop();
            if (!stk.empty()) right[i] = stk.top();
            stk.push(i);
        }
        ll ans = 0;
        for (int i = 0; i < n; ++i) {
            ans += (ll)(i - left[i]) * (right[i] - i) * arr[i] % mod;
            ans %= mod;
        }
        return ans;
    }
};

Go

func sumSubarrayMins(arr []int) int {
	mod := int(1e9) + 7
	n := len(arr)
	left := make([]int, n)
	right := make([]int, n)
	for i := range left {
		left[i] = -1
		right[i] = n
	}
	stk := []int{}
	for i, v := range arr {
		for len(stk) > 0 && arr[stk[len(stk)-1]] >= v {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			left[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	stk = []int{}
	for i := n - 1; i >= 0; i-- {
		for len(stk) > 0 && arr[stk[len(stk)-1]] > arr[i] {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			right[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	ans := 0
	for i, v := range arr {
		ans += (i - left[i]) * (right[i] - i) * v % mod
		ans %= mod
	}
	return ans
}

TypeScript

function sumSubarrayMins(arr: number[]): number {
    const n = arr.length;
    function getEle(i: number): number {
        if (i == -1 || i == n) return Number.MIN_SAFE_INTEGER;
        return arr[i];
    }
    let ans = 0;
    const mod = 10 ** 9 + 7;
    let stack = [];
    for (let i = -1; i <= n; i++) {
        while (stack.length && getEle(stack[0]) > getEle(i)) {
            const idx = stack.shift();
            ans = (ans + arr[idx] * (idx - stack[0]) * (i - idx)) % mod;
        }
        stack.unshift(i);
    }
    return ans;
}

...