给定一个整数数组 arr
,找到 min(b)
的总和,其中 b
的范围为 arr
的每个(连续)子数组。
由于答案可能很大,因此 返回答案模 10^9 + 7
。
示例 1:
输入:arr = [3,1,2,4] 输出:17 解释: 子数组为 [3],[1],[2],[4],[3,1],[1,2],[2,4],[3,1,2],[1,2,4],[3,1,2,4]。 最小值为 3,1,2,4,1,1,2,1,1,1,和为 17。
示例 2:
输入:arr = [11,81,94,43,3] 输出:444
提示:
1 <= arr.length <= 3 * 104
1 <= arr[i] <= 3 * 104
方法一:单调栈
题目要求的是每个子数组的最小值之和,实际上相当于,对于每个元素
因此,题目的重点转换为:求以
注意,这里为什么要求右侧第一个小于等于
我们可以举个例子来说明,对于以下数组:
下标为
0 4 3 2 5 3 2 1
* ^ *
按照同样的方法,我们可以求出下标为
0 4 3 2 5 3 2 1
* ^ *
如果我们求的是右侧第一个小于等于其值的下标,就不会有重复问题,因为下标为
回到这道题上,我们只需要遍历数组,对于每个元素
注意数据的溢出以及取模操作。
时间复杂度
class Solution:
def sumSubarrayMins(self, arr: List[int]) -> int:
n = len(arr)
left = [-1] * n
right = [n] * n
stk = []
for i, v in enumerate(arr):
while stk and arr[stk[-1]] >= v:
stk.pop()
if stk:
left[i] = stk[-1]
stk.append(i)
stk = []
for i in range(n - 1, -1, -1):
while stk and arr[stk[-1]] > arr[i]:
stk.pop()
if stk:
right[i] = stk[-1]
stk.append(i)
mod = 10**9 + 7
return sum((i - left[i]) * (right[i] - i) * v for i, v in enumerate(arr)) % mod
class Solution {
public int sumSubarrayMins(int[] arr) {
int n = arr.length;
int[] left = new int[n];
int[] right = new int[n];
Arrays.fill(left, -1);
Arrays.fill(right, n);
Deque<Integer> stk = new ArrayDeque<>();
for (int i = 0; i < n; ++i) {
while (!stk.isEmpty() && arr[stk.peek()] >= arr[i]) {
stk.pop();
}
if (!stk.isEmpty()) {
left[i] = stk.peek();
}
stk.push(i);
}
stk.clear();
for (int i = n - 1; i >= 0; --i) {
while (!stk.isEmpty() && arr[stk.peek()] > arr[i]) {
stk.pop();
}
if (!stk.isEmpty()) {
right[i] = stk.peek();
}
stk.push(i);
}
int mod = (int) 1e9 + 7;
long ans = 0;
for (int i = 0; i < n; ++i) {
ans += (long) (i - left[i]) * (right[i] - i) % mod * arr[i] % mod;
ans %= mod;
}
return (int) ans;
}
}
using ll = long long;
const int mod = 1e9 + 7;
class Solution {
public:
int sumSubarrayMins(vector<int>& arr) {
int n = arr.size();
vector<int> left(n, -1);
vector<int> right(n, n);
stack<int> stk;
for (int i = 0; i < n; ++i) {
while (!stk.empty() && arr[stk.top()] >= arr[i]) stk.pop();
if (!stk.empty()) left[i] = stk.top();
stk.push(i);
}
stk = stack<int>();
for (int i = n - 1; i >= 0; --i) {
while (!stk.empty() && arr[stk.top()] > arr[i]) stk.pop();
if (!stk.empty()) right[i] = stk.top();
stk.push(i);
}
ll ans = 0;
for (int i = 0; i < n; ++i) {
ans += (ll)(i - left[i]) * (right[i] - i) * arr[i] % mod;
ans %= mod;
}
return ans;
}
};
func sumSubarrayMins(arr []int) int {
mod := int(1e9) + 7
n := len(arr)
left := make([]int, n)
right := make([]int, n)
for i := range left {
left[i] = -1
right[i] = n
}
stk := []int{}
for i, v := range arr {
for len(stk) > 0 && arr[stk[len(stk)-1]] >= v {
stk = stk[:len(stk)-1]
}
if len(stk) > 0 {
left[i] = stk[len(stk)-1]
}
stk = append(stk, i)
}
stk = []int{}
for i := n - 1; i >= 0; i-- {
for len(stk) > 0 && arr[stk[len(stk)-1]] > arr[i] {
stk = stk[:len(stk)-1]
}
if len(stk) > 0 {
right[i] = stk[len(stk)-1]
}
stk = append(stk, i)
}
ans := 0
for i, v := range arr {
ans += (i - left[i]) * (right[i] - i) * v % mod
ans %= mod
}
return ans
}
function sumSubarrayMins(arr: number[]): number {
const n = arr.length;
function getEle(i: number): number {
if (i == -1 || i == n) return Number.MIN_SAFE_INTEGER;
return arr[i];
}
let ans = 0;
const mod = 10 ** 9 + 7;
let stack = [];
for (let i = -1; i <= n; i++) {
while (stack.length && getEle(stack[0]) > getEle(i)) {
const idx = stack.shift();
ans = (ans + arr[idx] * (idx - stack[0]) * (i - idx)) % mod;
}
stack.unshift(i);
}
return ans;
}