给出非负整数数组 A
,返回两个非重叠(连续)子数组中元素的最大和,子数组的长度分别为 L
和 M
。(这里需要澄清的是,长为 L 的子数组可以出现在长为 M 的子数组之前或之后。)
从形式上看,返回最大的 V
,而 V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
并满足下列条件之一:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, 或0 <= j < j + M - 1 < i < i + L - 1 < A.length
.
示例 1:
输入:A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 输出:20 解释:子数组的一种选择中,[9] 长度为 1,[6,5] 长度为 2。
示例 2:
输入:A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 输出:29 解释:子数组的一种选择中,[3,8,1] 长度为 3,[8,9] 长度为 2。
示例 3:
输入:A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 输出:31 解释:子数组的一种选择中,[5,6,0,9] 长度为 4,[0,3,8] 长度为 3。
提示:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
class Solution:
def maxSumTwoNoOverlap(self, nums: List[int], firstLen: int, secondLen: int) -> int:
n = len(nums)
s = [0] * (n + 1)
for i in range(1, n + 1):
s[i] = s[i - 1] + nums[i - 1]
ans1, ans2, fm, sm = 0, 0, 0, 0
for i in range(n - firstLen - secondLen + 1):
fm = max(fm, s[i + firstLen] - s[i])
ans1 = max(fm + s[i + firstLen + secondLen] - s[i + firstLen], ans1)
for i in range(n - firstLen - secondLen + 1):
sm = max(sm, s[i + secondLen] - s[i])
ans2 = max(sm + s[i + firstLen + secondLen] - s[i + secondLen], ans2)
return max(ans1, ans2)
class Solution {
public int maxSumTwoNoOverlap(int[] nums, int firstLen, int secondLen) {
int n = nums.length;
int[] s = new int[n + 1];
for (int i = 1; i <= n; i++) {
s[i] = s[i - 1] + nums[i - 1];
}
int ans1 = 0, ans2 = 0, fm = 0, sm = 0;
for (int i = 0; i < n - firstLen - secondLen + 1; i++) {
fm = Math.max(s[i + firstLen] - s[i], fm);
ans1 = Math.max(fm + s[i + firstLen + secondLen] - s[i + firstLen], ans1);
}
for (int i = 0; i < n - firstLen - secondLen + 1; i++) {
sm = Math.max(s[i + secondLen] - s[i], sm);
ans2 = Math.max(sm + s[i + firstLen + secondLen] - s[i + secondLen], ans2);
}
return Math.max(ans1, ans2);
}
}