Given an array nums
of distinct positive integers, return the number of tuples (a, b, c, d)
such that a * b = c * d
where a
, b
, c
, and d
are elements of nums
, and a != b != c != d
.
Example 1:
Input: nums = [2,3,4,6] Output: 8 Explanation: There are 8 valid tuples: (2,6,3,4) , (2,6,4,3) , (6,2,3,4) , (6,2,4,3) (3,4,2,6) , (4,3,2,6) , (3,4,6,2) , (4,3,6,2)
Example 2:
Input: nums = [1,2,4,5,10] Output: 16 Explanation: There are 16 valid tuples: (1,10,2,5) , (1,10,5,2) , (10,1,2,5) , (10,1,5,2) (2,5,1,10) , (2,5,10,1) , (5,2,1,10) , (5,2,10,1) (2,10,4,5) , (2,10,5,4) , (10,2,4,5) , (10,2,5,4) (4,5,2,10) , (4,5,10,2) , (5,4,2,10) , (5,4,10,2)
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 104
- All elements in
nums
are distinct.
Approach 1: Number of Combinations + Hash Table
Time complexity
class Solution:
def tupleSameProduct(self, nums: List[int]) -> int:
cnt = defaultdict(int)
for i in range(1, len(nums)):
for j in range(i):
x = nums[i] * nums[j]
cnt[x] += 1
return sum(v * (v - 1) // 2 for v in cnt.values()) << 3
class Solution {
public int tupleSameProduct(int[] nums) {
Map<Integer, Integer> cnt = new HashMap<>();
for (int i = 1; i < nums.length; ++i) {
for (int j = 0; j < i; ++j) {
int x = nums[i] * nums[j];
cnt.put(x, cnt.getOrDefault(x, 0) + 1);
}
}
int ans = 0;
for (int v : cnt.values()) {
ans += v * (v - 1) / 2;
}
return ans << 3;
}
}
class Solution {
public:
int tupleSameProduct(vector<int>& nums) {
unordered_map<int, int> cnt;
for (int i = 1; i < nums.size(); ++i) {
for (int j = 0; j < i; ++j) {
int x = nums[i] * nums[j];
++cnt[x];
}
}
int ans = 0;
for (auto& [_, v] : cnt) {
ans += v * (v - 1) / 2;
}
return ans << 3;
}
};
func tupleSameProduct(nums []int) int {
cnt := map[int]int{}
for i := 1; i < len(nums); i++ {
for j := 0; j < i; j++ {
x := nums[i] * nums[j]
cnt[x]++
}
}
ans := 0
for _, v := range cnt {
ans += v * (v - 1) / 2
}
return ans << 3
}