Given an array of positive integers nums
, return the maximum possible sum of an ascending subarray in nums
.
A subarray is defined as a contiguous sequence of numbers in an array.
A subarray [numsl, numsl+1, ..., numsr-1, numsr]
is ascending if for all i
where l <= i < r
, numsi < numsi+1
. Note that a subarray of size 1
is ascending.
Example 1:
Input: nums = [10,20,30,5,10,50] Output: 65 Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.
Example 2:
Input: nums = [10,20,30,40,50] Output: 150 Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.
Example 3:
Input: nums = [12,17,15,13,10,11,12] Output: 33 Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
class Solution:
def maxAscendingSum(self, nums: List[int]) -> int:
ans = t = 0
for i, v in enumerate(nums):
if i == 0 or v > nums[i - 1]:
t += v
ans = max(ans, t)
else:
t = v
return ans
class Solution {
public int maxAscendingSum(int[] nums) {
int ans = 0, t = 0;
for (int i = 0; i < nums.length; ++i) {
if (i == 0 || nums[i] > nums[i - 1]) {
t += nums[i];
ans = Math.max(ans, t);
} else {
t = nums[i];
}
}
return ans;
}
}
class Solution {
public:
int maxAscendingSum(vector<int>& nums) {
int ans = 0, t = 0;
for (int i = 0; i < nums.size(); ++i) {
if (i == 0 || nums[i] > nums[i - 1]) {
t += nums[i];
ans = max(ans, t);
} else {
t = nums[i];
}
}
return ans;
}
};
func maxAscendingSum(nums []int) int {
ans, t := 0, 0
for i, v := range nums {
if i == 0 || v > nums[i-1] {
t += v
if ans < t {
ans = t
}
} else {
t = v
}
}
return ans
}
#define max(a,b) (((a) > (b)) ? (a) : (b))
int maxAscendingSum(int* nums, int numsSize){
int res = nums[0];
int sum = nums[0];
for (int i = 1; i < numsSize; i++) {
if (nums[i - 1] >= nums[i]) {
res = max(res, sum);
sum = 0;
}
sum += nums[i];
}
return max(res, sum);
}
function maxAscendingSum(nums: number[]): number {
const n = nums.length;
let res = nums[0];
let sum = nums[0];
for (let i = 1; i < n; i++) {
if (nums[i] <= nums[i - 1]) {
res = Math.max(res, sum);
sum = 0;
}
sum += nums[i];
}
return Math.max(res, sum);
}
impl Solution {
pub fn max_ascending_sum(nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut res = nums[0];
let mut sum = nums[0];
for i in 1..n {
if nums[i - 1] >= nums[i] {
res = res.max(sum);
sum = 0;
}
sum += nums[i];
}
res.max(sum)
}
}