Skip to content

Latest commit

 

History

History
253 lines (208 loc) · 5.97 KB

File metadata and controls

253 lines (208 loc) · 5.97 KB

English Version

题目描述

给你一个下标从 0 开始、严格递增 的整数数组 nums 和一个正整数 diff 。如果满足下述全部条件,则三元组 (i, j, k) 就是一个 算术三元组

  • i < j < k
  • nums[j] - nums[i] == diff
  • nums[k] - nums[j] == diff

返回不同 算术三元组 的数目

 

示例 1:

输入:nums = [0,1,4,6,7,10], diff = 3
输出:2
解释:
(1, 2, 4) 是算术三元组:7 - 4 == 3 且 4 - 1 == 3 。
(2, 4, 5) 是算术三元组:10 - 7 == 3 且 7 - 4 == 3 。

示例 2:

输入:nums = [4,5,6,7,8,9], diff = 2
输出:2
解释:
(0, 2, 4) 是算术三元组:8 - 6 == 2 且 6 - 4 == 2 。
(1, 3, 5) 是算术三元组:9 - 7 == 2 且 7 - 5 == 2 。

 

提示:

  • 3 <= nums.length <= 200
  • 0 <= nums[i] <= 200
  • 1 <= diff <= 50
  • nums 严格 递增

解法

方法一:暴力枚举

直接暴力枚举 $i$, $j$, $k$,统计合法的三元组数目。

时间复杂度 $O(n^3)$,空间复杂度 $O(1)$

方法二:哈希表

由于 $nums$ 严格递增,那么对于 $nums$ 中的每个元素 $v$,判断 $v+diff$, $v+diff+diff$ 是否也在 $nums$ 中,若是,累加三元组数目。这里用哈希表实现元素的快速查找。

时间复杂度 $O(n)$,空间复杂度 $O(n)$

Python3

class Solution:
    def arithmeticTriplets(self, nums: List[int], diff: int) -> int:
        ans = 0
        n = len(nums)
        for i in range(n):
            for j in range(i + 1, n):
                for k in range(j + 1, n):
                    if nums[j] - nums[i] == nums[k] - nums[j] == diff:
                        ans += 1
        return ans
class Solution:
    def arithmeticTriplets(self, nums: List[int], diff: int) -> int:
        return sum(b - a == diff and c - b == diff for a, b, c in combinations(nums, 3))
class Solution:
    def arithmeticTriplets(self, nums: List[int], diff: int) -> int:
        s = set(nums)
        return sum(v + diff in s and v + diff + diff in s for v in nums)

Java

class Solution {
    public int arithmeticTriplets(int[] nums, int diff) {
        int ans = 0;
        int n = nums.length;
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                for (int k = j + 1; k < n; ++k) {
                    if (nums[j] - nums[i] == diff && nums[k] - nums[j] == diff) {
                        ++ans;
                    }
                }
            }
        }
        return ans;
    }
}
class Solution {
    public int arithmeticTriplets(int[] nums, int diff) {
        boolean[] vis = new boolean[310];
        for (int v : nums) {
            vis[v] = true;
        }
        int ans = 0;
        for (int v : nums) {
            if (vis[v + diff] && vis[v + diff + diff]) {
                ++ans;
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int arithmeticTriplets(vector<int>& nums, int diff) {
        int ans = 0;
        int n = nums.size();
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                for (int k = j + 1; k < n; ++k) {
                    if (nums[j] - nums[i] == diff && nums[k] - nums[j] == diff) {
                        ++ans;
                    }
                }
            }
        }
        return ans;
    }
};
class Solution {
public:
    int arithmeticTriplets(vector<int>& nums, int diff) {
        vector<bool> vis(310);
        for (int v : nums) vis[v] = true;
        int ans = 0;
        for (int v : nums) ans += vis[v + diff] && vis[v + diff + diff];
        return ans;
    }
};

Go

func arithmeticTriplets(nums []int, diff int) int {
	ans := 0
	n := len(nums)
	for i := 0; i < n; i++ {
		for j := i + 1; j < n; j++ {
			for k := j + 1; k < n; k++ {
				if nums[j]-nums[i] == diff && nums[k]-nums[j] == diff {
					ans++
				}
			}
		}
	}
	return ans
}
func arithmeticTriplets(nums []int, diff int) int {
	vis := make([]bool, 310)
	for _, v := range nums {
		vis[v] = true
	}
	ans := 0
	for _, v := range nums {
		if vis[v+diff] && vis[v+diff+diff] {
			ans++
		}
	}
	return ans
}

TypeScript

function arithmeticTriplets(nums: number[], diff: number): number {
    let res = 0;
    const n = nums.length;
    for (let i = 0; i < n - 2; i++) {
        for (let j = i + 1; j < n - 1; j++) {
            for (let k = j + 1; k < n; k++) {
                if (nums[k] - nums[j] > diff) {
                    break;
                }
                if (nums[j] - nums[i] === diff && nums[k] - nums[j] === diff) {
                    res++;
                }
            }
        }
    }
    return res;
}
function arithmeticTriplets(nums: number[], diff: number): number {
    let vis = new Array(310).fill(false);
    for (const v of nums) {
        vis[v] = true;
    }
    let ans = 0;
    for (const v of nums) {
        if (vis[v + diff] && vis[v + diff + diff]) {
            ++ans;
        }
    }
    return ans;
}

...