There is an undirected tree with n
nodes labeled from 0
to n - 1
, rooted at node 0
. You are given a 2D integer array edges
of length n - 1
where edges[i] = [ai, bi]
indicates that there is an edge between nodes ai
and bi
in the tree.
At every node i
, there is a gate. You are also given an array of even integers amount
, where amount[i]
represents:
- the price needed to open the gate at node
i
, ifamount[i]
is negative, or, - the cash reward obtained on opening the gate at node
i
, otherwise.
The game goes on as follows:
- Initially, Alice is at node
0
and Bob is at nodebob
. - At every second, Alice and Bob each move to an adjacent node. Alice moves towards some leaf node, while Bob moves towards node
0
. - For every node along their path, Alice and Bob either spend money to open the gate at that node, or accept the reward. Note that:
- If the gate is already open, no price will be required, nor will there be any cash reward.
- If Alice and Bob reach the node simultaneously, they share the price/reward for opening the gate there. In other words, if the price to open the gate is
c
, then both Alice and Bob payc / 2
each. Similarly, if the reward at the gate isc
, both of them receivec / 2
each.
- If Alice reaches a leaf node, she stops moving. Similarly, if Bob reaches node
0
, he stops moving. Note that these events are independent of each other.
Return the maximum net income Alice can have if she travels towards the optimal leaf node.
Example 1:
Input: edges = [[0,1],[1,2],[1,3],[3,4]], bob = 3, amount = [-2,4,2,-4,6] Output: 6 Explanation: The above diagram represents the given tree. The game goes as follows: - Alice is initially on node 0, Bob on node 3. They open the gates of their respective nodes. Alice's net income is now -2. - Both Alice and Bob move to node 1. Since they reach here simultaneously, they open the gate together and share the reward. Alice's net income becomes -2 + (4 / 2) = 0. - Alice moves on to node 3. Since Bob already opened its gate, Alice's income remains unchanged. Bob moves on to node 0, and stops moving. - Alice moves on to node 4 and opens the gate there. Her net income becomes 0 + 6 = 6. Now, neither Alice nor Bob can make any further moves, and the game ends. It is not possible for Alice to get a higher net income.
Example 2:
Input: edges = [[0,1]], bob = 1, amount = [-7280,2350] Output: -7280 Explanation: Alice follows the path 0->1 whereas Bob follows the path 1->0. Thus, Alice opens the gate at node 0 only. Hence, her net income is -7280.
Constraints:
2 <= n <= 105
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges
represents a valid tree.1 <= bob < n
amount.length == n
amount[i]
is an even integer in the range[-104, 104]
.
class Solution:
def mostProfitablePath(self, edges: List[List[int]], bob: int, amount: List[int]) -> int:
def dfs1(i, fa, t):
if i == 0:
ts[i] = min(ts[i], t)
return True
for j in g[i]:
if j != fa and dfs1(j, i, t + 1):
ts[j] = min(ts[j], t + 1)
return True
return False
def dfs2(i, fa, t, v):
if t == ts[i]:
v += amount[i] // 2
elif t < ts[i]:
v += amount[i]
nonlocal ans
if len(g[i]) == 1 and g[i][0] == fa:
ans = max(ans, v)
return
for j in g[i]:
if j != fa:
dfs2(j, i, t + 1, v)
n = len(edges) + 1
g = defaultdict(list)
ts = [n] * n
for a, b in edges:
g[a].append(b)
g[b].append(a)
dfs1(bob, -1, 0)
ts[bob] = 0
ans = -inf
dfs2(0, -1, 0, 0)
return ans
class Solution {
private List<Integer>[] g;
private int[] amount;
private int[] ts;
private int ans = Integer.MIN_VALUE;
public int mostProfitablePath(int[][] edges, int bob, int[] amount) {
int n = edges.length + 1;
g = new List[n];
ts = new int[n];
this.amount = amount;
for (int i = 0; i < n; ++i) {
g[i] = new ArrayList<>();
ts[i] = n;
}
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
dfs1(bob, -1, 0);
ts[bob] = 0;
dfs2(0, -1, 0, 0);
return ans;
}
private boolean dfs1(int i, int fa, int t) {
if (i == 0) {
ts[i] = Math.min(ts[i], t);
return true;
}
for (int j : g[i]) {
if (j != fa && dfs1(j, i, t + 1)) {
ts[j] = Math.min(ts[j], t + 1);
return true;
}
}
return false;
}
private void dfs2(int i, int fa, int t, int v) {
if (t == ts[i]) {
v += amount[i] >> 1;
} else if (t < ts[i]) {
v += amount[i];
}
if (g[i].size() == 1 && g[i].get(0) == fa) {
ans = Math.max(ans, v);
return;
}
for (int j : g[i]) {
if (j != fa) {
dfs2(j, i, t + 1, v);
}
}
}
}
class Solution {
public:
int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) {
int n = edges.size() + 1;
vector<vector<int>> g(n);
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].emplace_back(b);
g[b].emplace_back(a);
}
vector<int> ts(n, n);
function<bool(int i, int fa, int t)> dfs1 = [&](int i, int fa, int t) -> bool {
if (i == 0) {
ts[i] = t;
return true;
}
for (int j : g[i]) {
if (j != fa && dfs1(j, i, t + 1)) {
ts[j] = min(ts[j], t + 1);
return true;
}
}
return false;
};
dfs1(bob, -1, 0);
ts[bob] = 0;
int ans = INT_MIN;
function<void(int i, int fa, int t, int v)> dfs2 = [&](int i, int fa, int t, int v) {
if (t == ts[i]) v += amount[i] >> 1;
else if (t < ts[i]) v += amount[i];
if (g[i].size() == 1 && g[i][0] == fa) {
ans = max(ans, v);
return;
}
for (int j : g[i]) if (j != fa) dfs2(j, i, t + 1, v);
};
dfs2(0, -1, 0, 0);
return ans;
}
};
func mostProfitablePath(edges [][]int, bob int, amount []int) int {
n := len(edges) + 1
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
ts := make([]int, n)
for i := range ts {
ts[i] = n
}
var dfs1 func(int, int, int) bool
dfs1 = func(i, fa, t int) bool {
if i == 0 {
ts[i] = min(ts[i], t)
return true
}
for _, j := range g[i] {
if j != fa && dfs1(j, i, t+1) {
ts[j] = min(ts[j], t+1)
return true
}
}
return false
}
dfs1(bob, -1, 0)
ts[bob] = 0
ans := -0x3f3f3f3f
var dfs2 func(int, int, int, int)
dfs2 = func(i, fa, t, v int) {
if t == ts[i] {
v += amount[i] >> 1
} else if t < ts[i] {
v += amount[i]
}
if len(g[i]) == 1 && g[i][0] == fa {
ans = max(ans, v)
return
}
for _, j := range g[i] {
if j != fa {
dfs2(j, i, t+1, v)
}
}
}
dfs2(0, -1, 0, 0)
return ans
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}