-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths3dis_viz.py
68 lines (60 loc) · 1.74 KB
/
s3dis_viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""Demo to visualize data pipeline output."""
import matplotlib.pyplot as plt
import tensorflow as tf
from dataloaders.s3dis import create_s3dis_dataset
def main(create_pointcloud_dump: bool):
objects = {
0: "clutter",
1: "ceiling",
2: "floor",
3: "wall",
4: "beam",
5: "column",
6: "door",
7: "window",
8: "table",
9: "chair",
10: "sofa",
11: "bookcase",
12: "board",
}
dataset, _ = create_s3dis_dataset(
"./data/s3dis/pointcnn/",
shuffle_size=1,
batch_size=1,
num_points=10000,
use_normalized_coords=False,
holdout_area=5,
is_train_split=False,
is_deterministic=False,
num_classes=13,
seed=1,
)
x, y = tuple(tf.squeeze(tensor) for tensor in next(iter(dataset)))
x = x[:3, :]
y = tf.argmax(y, axis=0)
print(f"sample shape = {x.shape} | label shape = {y.shape}")
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
if create_pointcloud_dump:
open("scene-data.txt", "w", encoding="UTF-8").close()
for i, item_name in objects.items():
if i <= 3:
continue
mask = tf.equal(y, tf.cast(tf.fill([y.shape[0]], i), dtype=tf.int64))
cur_x = tf.boolean_mask(x, mask, axis=1)
print(item_name, cur_x.shape)
if cur_x.shape[1] > 0:
ax.scatter(cur_x[0, :], cur_x[1, :], cur_x[2, :], label=item_name)
if create_pointcloud_dump:
with open("scene-data.txt", "a", encoding="UTF-8") as fp:
for j in range(cur_x.shape[1]):
print(f"{cur_x[0,j]} {cur_x[1,j]} {cur_x[2,j]}", file=fp)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt.legend()
plt.show()
# plt.savefig("s3dis-data-pipeline-output.png") # Use for WSL dev
if __name__ == "__main__":
main(create_pointcloud_dump=False)