forked from ultralytics/ultralytics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
44 lines (38 loc) · 2.35 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import argparse, warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
def transformer_opt(opt):
opt = vars(opt)
del opt['data']
del opt['weight']
return opt
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weight', type=str, default='yolov8n.pt', help='training model path')
parser.add_argument('--data', type=str, default='ultralytics/datasets/coco128.yaml', help='data yaml path')
parser.add_argument('--imgsz', type=int, default=640, help='size of input images as integer')
parser.add_argument('--batch', type=int, default=16, help='number of images per batch (-1 for AutoBatch)')
parser.add_argument('--split', type=str, default='test', choices=['train', 'val', 'test'], help='dataset split to use for validation, i.e. val, test or train')
parser.add_argument('--project', type=str, default='runs/val', help='project name')
parser.add_argument('--name', type=str, default='exp', help='experiment name (project/name)')
parser.add_argument('--save_txt', action="store_true", help='save results as .txt file')
parser.add_argument('--save_json', action="store_true", help='save results to JSON file')
parser.add_argument('--save_hybrid', action="store_true", help='save hybrid version of labels (labels + additional predictions)')
parser.add_argument('--conf', type=float, default=0.001, help='object confidence threshold for detection (0.001 in val)')
parser.add_argument('--iou', type=float, default=0.65, help='intersection over union (IoU) threshold for NMS')
parser.add_argument('--max_det', type=int, default=300, help='maximum number of detections per image')
parser.add_argument('--half', action="store_true", help='use half precision (FP16)')
parser.add_argument('--dnn', action="store_true", help='use OpenCV DNN for ONNX inference')
parser.add_argument('--plots', action="store_true", default=True, help='ave plots during train/val')
parser.add_argument('--rect', action="store_true", help='rectangular val')
return parser.parse_known_args()[0]
class YOLOV8(YOLO):
'''
weigth:model path
'''
def __init__(self, weight='', task=None) -> None:
super().__init__(weight, task)
if __name__ == '__main__':
opt = parse_opt()
model = YOLOV8(weight=opt.weight)
model.val(data=opt.data, **transformer_opt(opt))