-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathplot_recallPrecision.py
133 lines (114 loc) · 5.41 KB
/
plot_recallPrecision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
"""
Script to plot recall-precision values with f-measure equi-potential lines.
Created on Dec 16, 2009
@author: Jörn Hees
modified by: Jiankai Sun
Date: 2017.03.22
"""
import scipy as sc
import pylab as pl
import itertools as it
def fmeasure(p, r):
"""Calculates the fmeasure for precision p and recall r."""
return 2*p*r / (p+r)
def _fmeasureCurve(f, p):
"""For a given f1 value and precision get the recall value.
The f1 measure is defined as: f(p,r) = 2*p*r / (p + r).
If you want to plot "equipotential-lines" into a precision/recall diagramm
(recall (y) over precision (x)), for a given fixed f value we get this
function by solving for r:
"""
return f * p / (2 * p - f)
def _plotFMeasures(fstepsize=.1, stepsize=0.0005, start = 0.0, end = 1.0):
"""Plots 10 fmeasure Curves into the current canvas."""
p = sc.arange(start, end, stepsize)[1:]
for f in sc.arange(0., 1., fstepsize)[1:]:
points = [(x, _fmeasureCurve(f, x)) for x in p
if 0 < _fmeasureCurve(f, x) <= 1.5]
try:
xs, ys = zip(*points)
curve, = pl.plot(xs, ys, "--", color="gray", linewidth=0.8) # , label=r"$f=%.1f$"%f) # exclude labels, for legend
# bad hack:
# gets the 10th last datapoint, from that goes a bit to the left, and a bit down
datapoint_x_loc = int(len(xs)/2)
datapoint_y_loc = int(len(ys)/2)
# x_left = 0.05
# y_left = 0.035
x_left = 0.035
y_left = -0.02
pl.annotate(r"$f=%.1f$" % f, xy=(xs[datapoint_x_loc], ys[datapoint_y_loc]), xytext=(xs[datapoint_x_loc] - x_left, ys[datapoint_y_loc] - y_left), size="small", color="gray")
except Exception as e:
print e
#colors = "gcmbbbrrryk"
#colors = "yyybbbrrrckgm" # 7 is a prime, so we'll loop over all combinations of colors and markers, when zipping their cycles
colors = "ycyybbbbrrrr"
#markers = "so^>v<dph8" # +x taken out, as no color.
markers = "^*>vsod*sod*ph8<"
# # if you don't believe the prime loop:
# icons = set()
# for i,j in it.izip(it.cycle(colors),it.cycle(markers)):
# if (i,j) in icons: break
# icons.add((i,j))
# print len(icons), len(colors)*len(markers)
def plotPrecisionRecallDiagram(title="title", points=None, labels=None, loc="best",xy_ranges = [0.6, 1.0, 0.6, 1.0], save_file = None):
"""Plot (precision,recall) values with 10 f-Measure equipotential lines.
Plots into the current canvas.
Points is a list of (precision,recall) pairs.
Optionally you can also provide labels (list of strings), which will be
used to create a legend, which is located at loc.
"""
if labels:
ax = pl.axes([0.1, 0.1, 0.7, 0.8]) # llc_x, llc_y, width, height
else:
ax = pl.gca()
pl.title(title)
pl.xlabel("Precision")
pl.ylabel("Recall")
_plotFMeasures(start = min(xy_ranges[0],xy_ranges[2]), end = max(xy_ranges[1],xy_ranges[3]))
if points:
getColor = it.cycle(colors).next
getMarker = it.cycle(markers).next
scps = [] # scatter points
for i, (x, y) in enumerate(points):
label = None
if labels:
label = labels[i]
print i, x, y, label
scp = ax.scatter(x, y, label=label, s=50, linewidths=0.75,
facecolor=getColor(), alpha=0.75, marker=getMarker())
scps.append(scp)
# pl.plot(x,y, label=label, marker=getMarker(), markeredgewidth=0.75, markerfacecolor=getColor())
# if labels: pl.text(x, y, label, fontsize="x-small")
if labels:
# pl.legend(scps, labels, loc=loc, scatterpoints=1, numpoints=1, fancybox=True) # passing scps & labels explicitly to work around a bug with legend seeming to miss out the 2nd scatterplot
#pl.legend(scps, labels, loc=(1.01, 0), scatterpoints=1, numpoints=1, fancybox=True) # passing scps & labels explicitly to work around a bug with legend seeming to miss out the 2nd scatterplot
pl.legend(scps, labels, loc= loc, scatterpoints=1, numpoints=1, fancybox=True,fontsize = 10) # passing scps & labels explicitly to work around a bug with legend seeming to miss out the 2nd scatterplot
pl.axis(xy_ranges) # xmin, xmax, ymin, ymax
if save_file:
pl.savefig(save_file)
pl.show()
pl.close()
def load_points(file_name):
f = open(file_name,"r")
points = {}
for l in f.readlines():
s = l.split()[0]
p = float(l.split()[1])
r = float(l.split()[2])
points[s] = (p,r)
f.close()
return points
def draw_recall_precision(data_file,title = "Precision_Recall"):
data_dict = load_points(data_file)
sorted_pairs = sorted(data_dict.iteritems(), key = lambda x: x[0])
values = [v for _,v in sorted_pairs]
keys = [k for k,_ in sorted_pairs]
plotPrecisionRecallDiagram(title = title,points = values,labels = keys, loc = "lower right" ,xy_ranges = [0.2,1,0.2,1], save_file = data_file[:len(data_file)-4] + "_" + title+".pdf")
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-i","--input",default= " ", help = "input performance file: method_name precision recall f1_score...")
parser.add_argument("--title",default = "Precision Recall Performance", help = "title to show figures")
args = parser.parse_args()
draw_recall_precision(args.input,title = args.title)