forked from yscacaca/DeepSense
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathplot.py
41 lines (30 loc) · 964 Bytes
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import collections
import time
import cPickle as pickle
_since_beginning = collections.defaultdict(lambda: {})
_since_last_flush = collections.defaultdict(lambda: {})
_iter = [0]
def tick():
_iter[0] += 1
def plot(name, value):
_since_last_flush[name][_iter[0]] = value
def flush():
prints = []
for name, vals in _since_last_flush.items():
prints.append("{}\t{}".format(name, np.mean(vals.values())))
_since_beginning[name].update(vals)
x_vals = np.sort(_since_beginning[name].keys())
y_vals = [_since_beginning[name][x] for x in x_vals]
plt.clf()
plt.plot(x_vals, y_vals)
plt.xlabel('iteration')
plt.ylabel(name)
plt.savefig(name.replace(' ', '_')+'.jpg')
print "iter {}\t{}".format(_iter[0], "\t".join(prints))
_since_last_flush.clear()
with open('log.pkl', 'wb') as f:
pickle.dump(dict(_since_beginning), f, pickle.HIGHEST_PROTOCOL)