-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpreparation.py
437 lines (376 loc) · 19 KB
/
preparation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import numpy as np
import networkx as nx
import pandas as pd
import random
from copy import deepcopy
import torch
import torch_geometric as tg
def graph_to_adj(graphs, ls_hierarchical_community):
# add generated graphs into edges
ls_adj_same_level = []
for idx, graph in enumerate(graphs):
G_same_level = deepcopy(graph)
hierarchical_community = ls_hierarchical_community[idx]
add_nodes = []
add_edges = []
for com in hierarchical_community:
add_nodes += com['partitions']
add_edges += com['edges']
G_same_level.add_nodes_from(add_nodes)
G_same_level.add_edges_from(add_edges)
adj_same_level = nx.to_scipy_sparse_matrix(G_same_level)
ls_adj_same_level.append(adj_same_level)
return ls_adj_same_level
def set_up_train_test_valid(graphs, ls_df_friends, ls_valid_edges, ls_test_edges, seed=123):
# valid data
ls_df_valid = []
for idx, valid_edges in enumerate(ls_valid_edges):
df_valid_pos_samples = pd.DataFrame(valid_edges['positive'], columns=['source', 'target'])
df_valid_pos_samples['label'] = 1
df_valid_neg_samples = pd.DataFrame(valid_edges['negative'], columns=['source', 'target'])
df_valid_neg_samples['label'] = 0
df_valid = pd.concat([df_valid_pos_samples, df_valid_neg_samples], axis=0)
ls_df_valid.append(df_valid)
# test data
ls_df_test = []
for idx, test_edges in enumerate(ls_test_edges):
df_test_pos_samples = pd.DataFrame(test_edges['positive'], columns=['source', 'target'])
df_test_pos_samples['label'] = 1
df_test_neg_samples = pd.DataFrame(test_edges['negative'], columns=['source', 'target'])
df_test_neg_samples['label'] = 0
df_test = pd.concat([df_test_pos_samples, df_test_neg_samples], axis=0)
ls_df_test.append(df_test)
# train data
ls_df_train = []
for idx, friends in enumerate(ls_df_friends):
graph = graphs[idx]
df_train_neg = pd.DataFrame(
np.random.choice(list(graph.nodes()), 10 * graph.number_of_edges()), columns=['source']
)
df_train_neg['target'] = np.random.choice(list(graph.nodes()), 10*graph.number_of_edges())
df_train_neg = df_train_neg[df_train_neg['source']<df_train_neg['target']]
df_train_neg = df_train_neg.drop_duplicates().reset_index(drop=True)
df_valid = ls_df_valid[idx]
df_test = ls_df_test[idx]
df_train_pos = ls_df_friends[idx]
df_train_pos = friends[friends['source']<friends['target']]
df_train_pos['label'] = 1
df_non = pd.concat([df_train_pos, df_valid, df_test]).reset_index(drop=True)[['source', 'target']]
df_train_neg = pd.merge(
df_non, df_train_neg, indicator=True, how='outer'
).query('_merge=="right_only"').drop('_merge', axis=1).reset_index(drop=True)
df_train_neg = df_train_neg.sample(df_train_pos.shape[0], random_state=seed)
df_train_neg['label'] = 0
df_train = pd.concat([df_train_pos, df_train_neg]).drop_duplicates().reset_index(drop=True)
ls_df_train.append(df_train)
return ls_df_train, ls_df_valid, ls_df_test
def LP_preparation(graphs, ls_df_friends, ls_test_edges, ls_valid_edges, ls_hierarchical_community):
print('is preparing datasets...')
ls_adj_same_level = graph_to_adj(graphs=graphs, ls_hierarchical_community=ls_hierarchical_community)
ls_df_train, ls_df_valid, ls_df_test = set_up_train_test_valid(
graphs=graphs, ls_df_friends=ls_df_friends, ls_valid_edges=ls_valid_edges, ls_test_edges=ls_test_edges
)
print('dataset preparation is done')
return ls_adj_same_level, ls_df_train, ls_df_valid, ls_df_test
def NC_preparation(graphs, ls_hierarchical_community):
print('is preparing datasets...')
ls_adj_same_level = graph_to_adj(graphs=graphs, ls_hierarchical_community=ls_hierarchical_community)
print('dataset preparation is done')
return ls_adj_same_level
def LP_set_up(
config, graphs, features,
ls_hierarchical_community, ls_adj_same_level, ls_up2down_edges, ls_down2up_edges,
ls_df_train, ls_df_valid, ls_df_test, device
):
# set up train, valid and test data
ls_train_user_left = []
ls_train_user_right = []
ls_train_labels = []
ls_train_labels_tensor = []
ls_valid_user_left = []
ls_valid_user_right = []
ls_valid_labels = []
ls_test_user_left = []
ls_test_user_right = []
ls_test_labels = []
for idx in range(len(graphs)):
ls_train_user_left.append(ls_df_train[idx]['source'].values.tolist())
ls_train_user_right.append(ls_df_train[idx]['target'].values.tolist())
ls_train_labels.append(ls_df_train[idx]['label'].values.tolist())
ls_train_labels_tensor.append(
torch.tensor(ls_df_train[idx]['label'].values.tolist(), dtype=torch.float).to(device)
)
ls_valid_user_left.append(ls_df_valid[idx]['source'].values.tolist())
ls_valid_user_right.append(ls_df_valid[idx]['target'].values.tolist())
ls_valid_labels.append(ls_df_valid[idx]['label'].values.tolist())
ls_test_user_left.append(ls_df_test[idx]['source'].values.tolist())
ls_test_user_right.append(ls_df_test[idx]['target'].values.tolist())
ls_test_labels.append(ls_df_test[idx]['label'].values.tolist())
# prepare features
for idx, feature in enumerate(features):
to_add = np.zeros((ls_adj_same_level[idx].shape[0]-feature.shape[0], feature.shape[1]), dtype=feature.dtype)
feature = np.append(feature, to_add, axis=0)
features[idx] = torch.FloatTensor(feature).to(device)
# set up data
ls_data = []
for idx, graph in enumerate(graphs):
edge_index = np.array(list(graph.edges))
edge_index = np.concatenate((edge_index, edge_index[:, ::-1]), axis=0)
edge_index = torch.from_numpy(edge_index).long().permute(1,0)
x = features[idx]
data = tg.data.Data(x=x, edge_index=edge_index).to(device)
ls_data.append(data)
# edges in same level
ls_same_level_edges_index = []
for idx, adj_same_level in enumerate(ls_adj_same_level):
same_level_edges_tuples = np.where(adj_same_level.toarray() == 1)
same_level_edges_index = [(same_level_edges_tuples[0][idx], same_level_edges_tuples[1][idx])
for idx in range(len(same_level_edges_tuples[0]))]
ls_same_level_edges_index.append(same_level_edges_index)
# edges from Up to Down
ls_up2down_edges_index = []
for idx, up2down_edges in enumerate(ls_up2down_edges):
up2down_edges_index = []
for key, values in up2down_edges.items():
for value in values:
up2down_edges_index.append((key, value))
ls_up2down_edges_index.append(up2down_edges_index)
# edges from Down to Up
if config.down2up_gnn == 'MEAN':
ls_down2up_arrays = []
ls_down2up_edges_index = None
for idx, adj_same_level in enumerate(ls_adj_same_level):
down2up_edges = ls_down2up_edges[idx]
down2up_array = np.zeros([adj_same_level.shape[0], adj_same_level.shape[0]])
for key, values in down2up_edges.items():
for value in values:
down2up_array[value, key] = 1
ls_tmp = []
hierarchical_community = ls_hierarchical_community[idx]
for idc, community in enumerate(hierarchical_community):
if idc == 0:
tmp = deepcopy(down2up_array)
tmp[:min(community['partitions']), min(community['partitions']):] = 0
tmp[max(community['partitions'])+1:, :] = 0
else:
tmp = deepcopy(down2up_array)
tmp[:min(community['partitions']), :min(hierarchical_community[idc-1]['partitions'])] = 0
tmp[max(community['partitions'])+1:, max(hierarchical_community[idc-1]['partitions']):] = 0
ls_tmp.append(tmp)
ls_down2up_arrays.append(ls_tmp)
else:
ls_down2up_arrays = None
ls_down2up_edges_index = []
for idx, down2up_edges in enumerate(ls_down2up_edges):
down2up_edges_index = []
for key, values in down2up_edges.items():
for value in values:
down2up_edges_index.append((key, value))
ls_down2up_edges_index.append(down2up_edges_index)
ls_data = []
ls_data_up2down = []
ls_data_down2up = []
ls_down2up_torch_arrays = []
for idx in range(len(graphs)):
same_level_edges_index = ls_same_level_edges_index[idx]
feature = features[idx]
up2down_edges_index = ls_up2down_edges_index[idx]
if config.down2up_gnn == 'MEAN':
down2up_arrays = ls_down2up_arrays[idx]
down2up_edges_index = None
else:
down2up_arrays = None
down2up_edges_index = ls_down2up_edges_index[idx]
edge_index = torch.tensor(same_level_edges_index, dtype=torch.long)
data = tg.data.Data(x=feature, edge_index=edge_index.t().contiguous()).to(device)
ls_data.append(data)
up2down_edges_index = torch.tensor(up2down_edges_index, dtype=torch.long)
data_up2down = tg.data.Data(x=feature, edge_index=up2down_edges_index.t().contiguous()).to(device)
ls_data_up2down.append(data_up2down)
if config.down2up_gnn == 'MEAN':
down2up_torch_arrays = [torch.tensor(down2up_array, dtype=torch.float).to(device)
for down2up_array in down2up_arrays]
ls_down2up_torch_arrays.append(down2up_torch_arrays)
else:
down2up_edges_index = torch.tensor(down2up_edges_index, dtype=torch.long)
data_down2up = tg.data.Data(
x=feature, edge_index=down2up_edges_index.t().contiguous()
).to(device)
ls_data_down2up.append(data_down2up)
# experiments
ls_train_user_left = [torch.LongTensor(train_user_left).to(device) for train_user_left in ls_train_user_left]
ls_train_user_right = [torch.LongTensor(train_user_right).to(device) for train_user_right in ls_train_user_right]
ls_valid_user_left = [torch.LongTensor(valid_user_left).to(device) for valid_user_left in ls_valid_user_left]
ls_valid_user_right = [torch.LongTensor(valid_user_right).to(device) for valid_user_right in ls_valid_user_right]
ls_test_user_left = [torch.LongTensor(test_user_left).to(device) for test_user_left in ls_test_user_left]
ls_test_user_right = [torch.LongTensor(test_user_right).to(device) for test_user_right in ls_test_user_right]
# for item in [ls_data, ls_data_up2down, ls_data_down2up, ls_down2up_torch_arrays, ls_train_user_left, ls_train_user_right, ls_valid_user_left, ls_valid_user_right, ls_test_user_left, ls_test_user_right, ls_train_labels, ls_train_labels_tensor, ls_valid_labels, ls_test_labels]:
# print(len(item))
print('data set up is done')
return ls_data, ls_data_up2down, ls_data_down2up, ls_down2up_torch_arrays, ls_train_user_left, ls_train_user_right, ls_valid_user_left, ls_valid_user_right, ls_test_user_left, ls_test_user_right, ls_train_labels, ls_train_labels_tensor, ls_valid_labels, ls_test_labels
def NC_set_up(
config, graphs, df_labels, features,
ls_hierarchical_community, ls_adj_same_level, ls_up2down_edges, ls_down2up_edges, device
):
for idx, feature in enumerate(features):
features[idx] = np.array(list(feature))
# set up semi-sup, few-shot
ls_train_nodes = []
ls_valid_nodes = []
ls_test_nodes = []
if config.dataset in ['emails', 'communities']:
for idx in range(len(graphs)):
if config.fshot:
ls_train_nodes.append(
np.hstack(
df_labels[idx].groupby('label')['node_id'].apply(list).apply(
lambda items: random.sample(items, 5)).values
)
)
else:
ls_train_nodes.append(
np.hstack(
df_labels[idx].groupby('label')['node_id'].apply(list).apply(
lambda items: random.sample(items, 20)).values
)
)
non_train_nodes = random.sample(
np.array([node for node in graphs[idx].nodes() if node not in ls_train_nodes[-1]]),
int(graphs[idx].number_of_nodes() * 0.20)
)
ls_valid_nodes.append(
np.array(non_train_nodes[: int(graphs[idx].number_of_nodes() * 0.1)])
)
ls_test_nodes.append(
np.array(non_train_nodes[int(graphs[idx].number_of_nodes() * 0.1):])
)
else:
for idx in range(len(graphs)):
if config.fshot:
ls_train_nodes.append(
np.hstack(
df_labels[idx].groupby('label')['node_id'].apply(list).apply(
lambda items: random.sample(items, 5)).values
)
)
else:
ls_train_nodes.append(
np.hstack(
df_labels[idx].groupby('label')['node_id'].apply(list).apply(
lambda items: random.sample(items, 20)).values
)
)
ls_valid_nodes.append(
np.array(
random.sample(set(graphs[idx].nodes()) - set(ls_train_nodes[idx]), 500)
)
)
ls_test_nodes.append(
np.array(
random.sample(set(graphs[idx].nodes()) - set(ls_train_nodes[idx]) - set(ls_valid_nodes[idx]), 1000)
)
)
for idx in range(len(graphs)):
print('for graph-{}, there are {} train, {} valid and {} test nodes.'.format(
idx, ls_train_nodes[idx].shape[0], ls_valid_nodes[idx].shape[0], ls_test_nodes[idx].shape[0]
))
# prepare features
for idx, feature in enumerate(features):
to_add = np.zeros((ls_adj_same_level[idx].shape[0]-feature.shape[0], feature.shape[1]), dtype=feature.dtype)
feature = np.append(feature, to_add, axis=0)
features[idx] = torch.FloatTensor(feature).to(device)
# set up data
ls_data = []
for idx, graph in enumerate(graphs):
edge_index = np.array(list(graph.edges))
edge_index = np.concatenate((edge_index, edge_index[:,::-1]), axis=0)
edge_index = torch.from_numpy(edge_index).long().permute(1,0)
x = features[idx]
data = tg.data.Data(x=x, edge_index=edge_index).to(device)
ls_data.append(data)
# prepare labels
ls_labels_tensor = []
ls_labels = []
for idx, df_label in enumerate(df_labels):
ls_labels_tensor.append(torch.LongTensor(df_label['label'].values).to(device))
ls_labels.append(pd.get_dummies(df_label['label']).values)
# edges in same level
ls_same_level_edges_index = []
for idx, adj_same_level in enumerate(ls_adj_same_level):
same_level_edges_tuples = np.where(adj_same_level.toarray()==1)
same_level_edges_index = [(same_level_edges_tuples[0][idx], same_level_edges_tuples[1][idx])
for idx in range(len(same_level_edges_tuples[0]))]
ls_same_level_edges_index.append(same_level_edges_index)
del idx, adj_same_level, same_level_edges_index
# edges from Up to Down
ls_up2down_edges_index = []
for idx, up2down_edges in enumerate(ls_up2down_edges):
up2down_edges_index = []
for key, values in up2down_edges.items():
for value in values:
up2down_edges_index.append((key, value))
ls_up2down_edges_index.append(up2down_edges_index)
del idx, up2down_edges
# edges from Down to Up
if config.down2up_gnn == 'MEAN':
ls_down2up_arrays = []
for idx, adj_same_level in enumerate(ls_adj_same_level):
down2up_edges = ls_down2up_edges[idx]
down2up_array = np.zeros([adj_same_level.shape[0], adj_same_level.shape[0]])
for key, values in down2up_edges.items():
for value in values:
down2up_array[value, key] = 1
ls_tmp = []
hierarchical_community = ls_hierarchical_community[idx]
for idc, community in enumerate(hierarchical_community):
if idc == 0:
tmp = deepcopy(down2up_array)
tmp[:min(community['partitions']), min(community['partitions']):] = 0
tmp[max(community['partitions'])+1:, :] = 0
else:
tmp = deepcopy(down2up_array)
tmp[:min(community['partitions']), :min(hierarchical_community[idc-1]['partitions'])] = 0
tmp[max(community['partitions'])+1:, max(hierarchical_community[idc-1]['partitions']):] = 0
ls_tmp.append(tmp)
ls_down2up_arrays.append(ls_tmp)
else:
ls_down2up_edges_index = []
for idx, down2up_edges in enumerate(ls_down2up_edges):
down2up_edges_index = []
for key, values in down2up_edges.items():
for value in values:
down2up_edges_index.append((key, value))
ls_down2up_edges_index.append(down2up_edges_index)
del idx, down2up_edges
ls_data = []
ls_data_up2down = []
ls_data_down2up = []
ls_down2up_torch_arrays = []
for idx in range(len(graphs)):
same_level_edges_index = ls_same_level_edges_index[idx]
feature = features[idx]
up2down_edges_index = ls_up2down_edges_index[idx]
if config.down2up_gnn == 'MEAN':
down2up_arrays = ls_down2up_arrays[idx]
else:
down2up_edges_index = ls_down2up_edges_index[idx]
edge_index = torch.tensor(same_level_edges_index, dtype=torch.long)
data = tg.data.Data(
x=feature, edge_index=edge_index.t().contiguous()
).to(device)
ls_data.append(data)
up2down_edges_index = torch.tensor(up2down_edges_index, dtype=torch.long)
data_up2down = tg.data.Data(
x=feature, edge_index=up2down_edges_index.t().contiguous()
).to(device)
ls_data_up2down.append(data_up2down)
if config.down2up_gnn == 'MEAN':
down2up_torch_arrays = [torch.tensor(down2up_array, dtype=torch.float).to(device)
for down2up_array in down2up_arrays]
ls_down2up_torch_arrays.append(down2up_torch_arrays)
else:
down2up_edges_index = torch.tensor(down2up_edges_index, dtype=torch.long)
data_down2up = tg.data.Data(x=feature, edge_index=down2up_edges_index.t().contiguous()).to(device)
ls_data_down2up.append(data_down2up)
print('data set up is done')
return ls_data, features, ls_data_up2down, ls_data_down2up, ls_down2up_torch_arrays, ls_train_nodes, ls_valid_nodes, ls_test_nodes, ls_labels, ls_labels_tensor