-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
411 lines (371 loc) · 21.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# ----------------------------------------------------------------------------------------------
# CoFormer Official Code
# Copyright (c) Junhyeong Cho. All Rights Reserved
# Licensed under the Apache License 2.0 [see LICENSE for details]
# ----------------------------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved [see LICENSE for details]
# ----------------------------------------------------------------------------------------------
import argparse
import datetime
import json
import random
import time
import os
from xml.sax.handler import all_features
import numpy as np
import torch
import datasets
import util.misc as utils
from torch.utils.data import DataLoader, DistributedSampler
from torch.utils.data import Subset
from datasets import build_dataset, build_processed_dataset
from engine import preprocess_neighbors
from engine import encoder_evaluate_swig, evaluate_swig
from engine import encoder_train_one_epoch, decoder_train_one_epoch
from models import build_encoder_model, build_decoder_model
from pathlib import Path
def get_args_parser():
parser = argparse.ArgumentParser('Set Grounded Situation Recognition Transformer', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--lr_drop', default=20, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--encoder_batch_size', default=16, type=int)
parser.add_argument('--decoder_batch_size', default=4, type=int)
parser.add_argument('--encoder_epochs', default=0, type=int)
parser.add_argument('--decoder_epochs', default=0, type=int)
# Backbone parameters
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--position_embedding', default='learned', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# Transformer parameters
parser.add_argument('--num_enc_layers', default=6, type=int,
help="Number of encoding layers in GSRFormer")
parser.add_argument('--num_dec_layers', default=5, type=int,
help="Number of decoding layers in GSRFormer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=512, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.15, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
# Loss coefficients
parser.add_argument('--noun_loss_coef', default=2, type=float)
parser.add_argument('--verb_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--bbox_conf_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=5, type=float)
# Dataset parameters
parser.add_argument('--dataset_file', default='swig')
parser.add_argument('--swig_path', type=str, default="SWiG")
parser.add_argument('--dev', default=False, action='store_true')
parser.add_argument('--test', default=False, action='store_true')
# Etc...
parser.add_argument('--inference', default=False)
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--encoder_start_epoch', default=0, type=int, metavar='N',
help='encoder start epoch')
parser.add_argument('--decoder_start_epoch', default=0, type=int, metavar='N',
help='decoder start epoch')
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--encoder_saved_model', default='GSRFormer/encoder_checkpoint.pth',
help='path where saved encoder model is')
parser.add_argument('--decoder_saved_model', default='GSRFormer/decoder_checkpoint.pth',
help='path where saved decoder model is')
parser.add_argument('--load_saved_encoder', default=False, type=bool)
parser.add_argument('--load_saved_decoder', default=False, type=bool)
parser.add_argument('--preprocess', default=False, type=bool)
parser.add_argument('--images_per_segment', default=9463, type=int)
parser.add_argument('--images_per_eval_segment', default=12600, type=int)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# check dataset
if args.dataset_file == "swig":
from datasets.swig import collater, processed_collater
else:
assert False, f"dataset {args.dataset_file} is not supported now"
# build dataset
dataset_train = build_dataset(image_set='train', args=args)
args.num_noun_classes = dataset_train.num_nouns()
dataset_val = build_dataset(image_set='val', args=args)
dataset_test = build_dataset(image_set='test', args=args)
# build Encoder Transformer model
encoder_model, encoder_criterion = build_encoder_model(args)
encoder_model.to(device)
encoder_model_without_ddp = encoder_model
if args.load_saved_encoder == True:
encoder_checkpoint = torch.load(args.encoder_saved_model, map_location='cpu')
encoder_model.load_state_dict(encoder_checkpoint["encoder_model"])
if args.distributed:
encoder_model = torch.nn.parallel.DistributedDataParallel(encoder_model, device_ids=[args.gpu])
encoder_model_without_ddp = encoder_model.module
num_encoder_parameters = sum(p.numel() for p in encoder_model.parameters() if p.requires_grad)
print('number of Encoder Transformer parameters:', num_encoder_parameters)
encoder_param_dicts = [
{"params": [p for n, p in encoder_model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in encoder_model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
}
]
encoder_optimizer = torch.optim.AdamW(encoder_param_dicts, lr=args.lr, weight_decay=args.weight_decay)
encoder_lr_scheduler = torch.optim.lr_scheduler.StepLR(encoder_optimizer, args.lr_drop)
if args.load_saved_encoder == True:
encoder_optimizer.load_state_dict(encoder_checkpoint["encoder_optimizer"])
encoder_lr_scheduler.load_state_dict(encoder_checkpoint["encoder_lr_scheduler"])
args.encoder_start_epoch = encoder_checkpoint["encoder_epoch"] + 1
# build Decoder Transformer Model
decoder_model, decoder_criterion = build_decoder_model(args)
decoder_model.to(device)
decoder_model_without_ddp = decoder_model
if args.load_saved_decoder == True:
decoder_checkpoint = torch.load(args.decoder_saved_model, map_location='cpu')
decoder_model.load_state_dict(decoder_checkpoint["decoder_model"])
if args.distributed:
decoder_model = torch.nn.parallel.DistributedDataParallel(decoder_model, device_ids=[args.gpu])
decoder_model_without_ddp = decoder_model.module
num_decoder_parameters = sum(p.numel() for p in decoder_model.parameters() if p.requires_grad)
print('number of Decoder Transformer parameters:', num_decoder_parameters)
decoder_param_dicts = [
{"params": [p for n, p in decoder_model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in decoder_model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
}
]
decoder_optimizer = torch.optim.AdamW(decoder_param_dicts, lr=args.lr, weight_decay=args.weight_decay)
decoder_lr_scheduler = torch.optim.lr_scheduler.StepLR(decoder_optimizer, args.lr_drop)
if args.load_saved_decoder == True:
"""
decoder_optimizer.load_state_dict(decoder_checkpoint["decoder_optimizer"])
decoder_lr_scheduler.load_state_dict(decoder_checkpoint["decoder_lr_scheduler"])
"""
args.decoder_start_epoch = decoder_checkpoint["decoder_epoch"] + 1
# Dataset Sampler
# For Encoder Transformer
if not args.test and not args.dev:
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
if args.dev:
if args.distributed:
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
elif args.test:
if args.distributed:
sampler_test = DistributedSampler(dataset_test, shuffle=False)
else:
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
# For preprocessing
if args.preprocess == True:
preprocess_sampler_train = torch.utils.data.RandomSampler(dataset_train)
preprocess_sampler_val = torch.utils.data.RandomSampler(dataset_val)
preprocess_sampler_test = torch.utils.data.RandomSampler(dataset_test)
output_dir = Path(args.output_dir)
# dataset loader
# For Encoder Transformer
if not args.test and not args.dev:
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.encoder_batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, num_workers=args.num_workers,
collate_fn=collater, batch_sampler=batch_sampler_train)
data_loader_val = DataLoader(dataset_val, num_workers=args.num_workers,
drop_last=False, collate_fn=collater, sampler=sampler_val)
else:
if args.dev:
data_loader_val = DataLoader(dataset_val, num_workers=args.num_workers,
drop_last=False, collate_fn=collater, sampler=sampler_val)
elif args.test:
data_loader_test = DataLoader(dataset_test, num_workers=args.num_workers,
drop_last=False, collate_fn=collater, sampler=sampler_test)
# For Preprocessing
if args.preprocess == True:
batch_preprocess_sampler_train = torch.utils.data.BatchSampler(preprocess_sampler_train, args.encoder_batch_size, drop_last=False)
batch_preprocess_sampler_val = torch.utils.data.BatchSampler(preprocess_sampler_val, args.encoder_batch_size, drop_last=False)
batch_preprocess_sampler_test = torch.utils.data.BatchSampler(preprocess_sampler_test, args.encoder_batch_size, drop_last=False)
preprocess_data_loader_train = DataLoader(dataset_train, num_workers=args.num_workers, drop_last=False,
collate_fn=collater, batch_sampler=batch_preprocess_sampler_train)
preprocess_data_loader_val = DataLoader(dataset_val, num_workers=args.num_workers, drop_last=False,
collate_fn=collater, batch_sampler=batch_preprocess_sampler_val)
preprocess_data_loader_test = DataLoader(dataset_test, num_workers=args.num_workers, drop_last=False,
collate_fn=collater, batch_sampler=batch_preprocess_sampler_test)
# use saved model for evaluation (using dev set or test set)
if args.dev or args.test:
encoder_checkpoint = torch.load(args.encoder_saved_model, map_location='cpu')
encoder_model.load_state_dict(encoder_checkpoint["encoder_model"])
decoder_checkpoint = torch.load(args.decoder_saved_model, map_location='cpu')
decoder_model.load_state_dict(decoder_checkpoint["decoder_model"])
# build dataset
if args.dev:
with open("__storage__/valDict.json") as val_json:
val_dict = json.load(val_json)
processed_dataset_val = build_processed_dataset(image_set='val', args=args, neighbors_dict=val_dict)
if args.distributed:
sampler_val = DistributedSampler(processed_dataset_val, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(processed_dataset_val)
data_loader = DataLoader(processed_dataset_val, num_workers=args.num_workers,
drop_last=False, collate_fn=processed_collater,
sampler=sampler_val)
elif args.test:
with open("__storage__/testDict.json") as test_json:
test_dict = json.load(test_json)
processed_dataset_test = build_processed_dataset(image_set='test', args=args, neighbors_dict=test_dict)
if args.distributed:
sampler_test = DistributedSampler(processed_dataset_test, shuffle=False)
else:
sampler_test = torch.utils.data.SequentialSampler(processed_dataset_test)
data_loader = DataLoader(processed_dataset_test, num_workers=args.num_workers,
drop_last=False, collate_fn=processed_collater,
sampler=sampler_test)
test_stats = evaluate_swig(encoder_model, decoder_model, decoder_criterion,
data_loader, device, args.output_dir)
log_stats = {**{f'test_{k}': v for k, v in test_stats.items()}}
# write log
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
return None
if not os.path.exists("__storage__"):
os.mkdir("__storage__")
# train GSRFormer Encoder Transformer
print("Start training GSRFormer Encoder Transformer at epoch ",args.encoder_start_epoch)
start_time = time.time()
max_test_verb_acc_top1 = 4
for epoch in range(args.encoder_start_epoch, args.encoder_epochs):
# train one epoch
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = encoder_train_one_epoch(encoder_model, encoder_criterion, data_loader_train, encoder_optimizer,
device, epoch, args.clip_max_norm)
encoder_lr_scheduler.step()
# evaluate
test_stats = encoder_evaluate_swig(encoder_model, encoder_criterion, data_loader_val, device, args.output_dir)
# log & output
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'encoder_epoch': epoch,
'num_encoder_parameters': num_encoder_parameters}
if args.output_dir:
checkpoint_paths = [output_dir / 'encoder_checkpoint.pth']
# save checkpoint for every new max accuracy
if log_stats['test_verb_acc_top1_unscaled'] > max_test_verb_acc_top1:
max_test_verb_acc_top1 = log_stats['test_verb_acc_top1_unscaled']
checkpoint_paths.append(output_dir / f'encoder_checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({'encoder_model': encoder_model_without_ddp.state_dict(),
'encoder_optimizer': encoder_optimizer.state_dict(),
'encoder_lr_scheduler': encoder_lr_scheduler.state_dict(),
'encoder_epoch': epoch,
'args': args}, checkpoint_path)
# write log
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
# Preprocess
torch.cuda.empty_cache()
if args.preprocess == True:
preprocess_neighbors(encoder_model, preprocess_data_loader_train,
"train", device, args.images_per_segment)
preprocess_neighbors(encoder_model, preprocess_data_loader_val,
"val", device, args.images_per_eval_segment)
preprocess_neighbors(encoder_model, preprocess_data_loader_test,
"test", device, args.images_per_eval_segment)
if args.decoder_start_epoch >= args.decoder_epochs:
return None
# build Decoder Transformer dataset
with open("__storage__/trainDict.json") as train_json:
train_dict = json.load(train_json)
with open("__storage__/valDict.json") as val_json:
val_dict = json.load(val_json)
processed_dataset_train = build_processed_dataset("train", args, neighbors_dict=train_dict)
processed_dataset_val = build_processed_dataset("val", args, neighbors_dict=val_dict)
# build Decoder Transformer dataset sampler
if args.distributed:
sampler_train = DistributedSampler(processed_dataset_train)
sampler_val = DistributedSampler(processed_dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(processed_dataset_train)
sampler_val = torch.utils.data.SequentialSampler(processed_dataset_val)
# build Decoder Transformer dataset loader
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.decoder_batch_size, drop_last=True)
data_loader_train = DataLoader(processed_dataset_train, num_workers=args.num_workers,
collate_fn=processed_collater, batch_sampler=batch_sampler_train)
data_loader_val = DataLoader(processed_dataset_val, num_workers=args.num_workers,
drop_last=False, collate_fn=processed_collater, sampler=sampler_val)
# Train GSRFormer Decoder Transformer
print("Start training GSRFormer Decoder Transformer at epoch ",args.decoder_start_epoch)
start_time = time.time()
max_test_verb_acc_top1 = 43
for epoch in range(args.decoder_start_epoch, args.decoder_epochs):
# train one epoch
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = decoder_train_one_epoch(decoder_model, decoder_criterion, encoder_model,
data_loader_train, decoder_optimizer,
device, epoch, args.images_per_segment,
args.clip_max_norm)
decoder_lr_scheduler.step()
# evaluate
test_stats = evaluate_swig(encoder_model, decoder_model, decoder_criterion,
data_loader_val, device, args.output_dir)
# log & output
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'decoder_epoch': epoch,
'num_decoder_parameters': num_decoder_parameters}
if args.output_dir:
checkpoint_paths = [output_dir / 'decoder_checkpoint.pth']
# save checkpoint for every new max accuracy
if log_stats['test_verb_acc_top1_unscaled'] > max_test_verb_acc_top1:
max_test_verb_acc_top1 = log_stats['test_verb_acc_top1_unscaled']
checkpoint_paths.append(output_dir / f'decoder_checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({'decoder_model': decoder_model_without_ddp.state_dict(),
'decoder_optimizer': decoder_optimizer.state_dict(),
'decoder_lr_scheduler': decoder_lr_scheduler.state_dict(),
'decoder_epoch': epoch,
'args': args}, checkpoint_path)
# write log
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('GSRFormer training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)