-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ogbhiv.py
147 lines (117 loc) · 5.67 KB
/
main_ogbhiv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
import torch
import torch.optim as optim
from ogb.graphproppred import PygGraphPropPredDataset, Evaluator
from torch_geometric.data import DataLoader
from torch_geometric.transforms import Compose
from transform import OGBTransform, SkeletonTree
from utils.process import get_node_emb_size
from model import Net
def train(model, device, train_loader, optimizer):
model.train()
total_loss = 0
for data in train_loader:
data = data.to(device)
output = model(data)
y = data.y.to(output.dtype)
criterion = torch.nn.BCEWithLogitsLoss(reduction='sum')
loss = criterion(output, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(train_loader.dataset)
@torch.no_grad()
def evaluate(model, device, loader, evaluator):
model.eval()
y_preds, y_trues = [], []
for data in loader:
data = data.to(device)
y_preds.append(model(data))
y_trues.append(data.y)
perf = evaluator.eval({
'y_pred': torch.cat(y_preds, dim=0),
'y_true': torch.cat(y_trues, dim=0),
})[evaluator.eval_metric]
return perf
def main():
# Parameters settings
parser = argparse.ArgumentParser(description='PyTorch implementation of graph trunk network (GTR)')
parser.add_argument('--name', type=str, default="ogbg-molhiv",
help='name of dataset (default: ogbg-molhiv)')
parser.add_argument('--device', type=int, default=0,
help='which GPU to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=128,
help='input batch size for training (default: 128)')
parser.add_argument('--hidden_dim', type=int, default=128,
help='number of hidden units (default: 128)')
parser.add_argument('--num_layers', type=int, default=4,
help='number of LSTM layers (default: 4)')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout ratio (default: 0.5)')
parser.add_argument('--bidirectional', action="store_true",
help='whether to use bidirectional LSTMs (default: False)')
parser.add_argument('--lr', type=float, default=0.0003,
help='initial learning rate (default: 0.0003)')
parser.add_argument('--lr_factor', type=float, default=0.5,
help='reduction factor of learning rate (default: 0.5)')
parser.add_argument('--lr_patience', type=int, default=10,
help='number of epochs for learning rate reduction (default: 10)')
parser.add_argument('--lr_limit', type=float, default=5e-5,
help='minimum learning rate, stop training once it is reached (default: 5e-5)')
parser.add_argument('--max_level', type=int, default=4, # avg: 2.26, max: 26
help='maximum number of trunk levels (default: 4)')
parser.add_argument('--epochs', type=int, default=50,
help='maximum number of training epochs (default: 50)')
args = parser.parse_args()
print(args)
transform = Compose([OGBTransform(), SkeletonTree(mol=True, max_level=args.max_level)])
evaluator = Evaluator(args.name)
dataset = PygGraphPropPredDataset(args.name, 'data', pre_transform=transform)
node_emb_size = get_node_emb_size(dataset)
split_idx = dataset.get_idx_split()
train_dataset = dataset[split_idx['train']]
val_dataset = dataset[split_idx['valid']]
test_dataset = dataset[split_idx['test']]
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
model = Net(node_emb_size=node_emb_size,
hidden_dim=args.hidden_dim,
output_dim=dataset.num_tasks,
num_layers=args.num_layers,
dropout=args.dropout,
bidirectional=args.bidirectional,
max_level=args.max_level,
device=device).to(device)
model.reset_parameters()
print()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max',
factor=args.lr_factor,
patience=args.lr_patience,
verbose=True)
train_curve = []
val_curve = []
test_curve = []
for epoch in range(1, args.epochs + 1):
train_loss = train(model, device, train_loader, optimizer)
train_perf = evaluate(model, device, train_loader, evaluator)
val_perf = evaluate(model, device, val_loader, evaluator)
test_perf = evaluate(model, device, test_loader, evaluator)
print(f'Epoch: {epoch:03d}, Loss: {train_loss:.6f}, '
f'Train: {train_perf:.6f}, Val: {val_perf:.6f}, Test: {test_perf:.6f}')
# with open(filename, 'a') as f:
# f.write(f'{train_loss:.6f} {train_perf:.6f} {val_perf:.6f} {test_perf:.6f}')
# f.write("\n")
train_curve.append(train_perf)
val_curve.append(val_perf)
test_curve.append(test_perf)
scheduler.step(val_perf)
if optimizer.param_groups[0]['lr'] < args.lr_limit:
break
print()
print(f'===== Final result: {test_curve[val_curve.index(max(val_curve))]}')
if __name__ == '__main__':
main()