-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
42 lines (34 loc) · 1.88 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import scipy.sparse as sp
def get_item_weight(train_dict, num_item, beta, max_capping, alpha):
item_pop = np.zeros(num_item, dtype=np.float32)
for u in train_dict:
for i in train_dict[u]:
item_pop[i] += 1.0
item_pop_mean = np.mean(item_pop ** beta)
item_pop_inverse = 1 / (alpha * item_pop_mean + (1 - alpha) * item_pop ** beta)
item_pop_inverse_clip = np.array([min(p, max_capping) for p in item_pop_inverse])
return item_pop_inverse_clip
def get_rating_matrix_sparse(train_dict, validate_dict, num_user, num_item):
row_train = [u for u in train_dict for i in train_dict[u]]
col_train = [i for u in train_dict for i in train_dict[u]]
row_validate = [u for u in validate_dict for i in validate_dict[u]]
col_validate = [i for u in validate_dict for i in validate_dict[u]]
rating_matrix_sparse_validate = sp.csr_matrix(([1] * len(row_train), (row_train, col_train)), (num_user, num_item)).astype(np.float32)
rating_matrix_sparse_test = sp.csr_matrix(([1] * len(row_train + row_validate), (row_train + row_validate, col_train + col_validate)), (num_user, num_item)).astype(np.float32)
return rating_matrix_sparse_validate, rating_matrix_sparse_test
def get_user_batch(num_user, batch_size):
user_batch = list()
user_list = list(range(num_user))
np.random.shuffle(user_list)
i = 0
while i < len(user_list):
user_batch.append(np.array(user_list[i:i + batch_size]))
i += batch_size
return user_batch
def get_top_K_index(pred_scores, K):
ind = np.argpartition(pred_scores, -K)[:, -K:]
arr_ind = pred_scores[np.arange(len(pred_scores))[:, None], ind]
arr_ind_argsort = np.argsort(arr_ind)[np.arange(len(pred_scores)), ::-1]
batch_pred_list = ind[np.arange(len(pred_scores))[:, None], arr_ind_argsort]
return batch_pred_list.tolist()