-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_edgedetect.py
89 lines (79 loc) · 3.98 KB
/
process_edgedetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import cv2
import numpy as np
import logging
import argparse
from os import listdir, mkdir
from os.path import isfile, join, exists
logging.basicConfig(level=logging.getLevelName('DEBUG'), format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S')
logging.addLevelName(55, "Hello!")
logging.addLevelName(56, "Goodbye!")
argParser = argparse.ArgumentParser(description="Edge detector")
argParser.add_argument("--image-folder", default="images", type=str, help="Path to the directory that contains images from which circles should be extracted")
argParser.add_argument("--mode", default="canny", type=str, help="Which algorithm to use - sobel, canny, roberts")
argParser.add_argument("--draw", default=True, type=bool, help="Should the image be drawn on screen?")
argParser.add_argument("--export", default=None, type=str, help="Set this parameter to a name of a directory to export pictures")
args = argParser.parse_args()
if (args.mode not in ["sobel", "canny", "roberts"]):
raise Exception("Please choose between sobel and canny algorithms")
logging.log(55, 'Script started.')
logging.info("Creating output directory...")
fileList = [f for f in listdir(args.image_folder) if isfile(join(args.image_folder, f))]
output_folder = args.export
if output_folder and not exists(output_folder):
mkdir(output_folder)
for file in fileList:
logging.info(f"Working on picture {file}!")
frame = cv2.imread(f"{args.image_folder}/{file}", cv2.IMREAD_GRAYSCALE)
frame = cv2.GaussianBlur(frame, (5,5), 0)
if args.mode == "sobel":
#sobelx = cv2.Sobel(src=frame, ddepth=cv2.CV_64F, dx=1, dy=0, ksize=5) # Sobel Edge Detection on the X axis
#sobely = cv2.Sobel(src=frame, ddepth=cv2.CV_64F, dx=0, dy=1, ksize=5) # Sobel Edge Detection on the Y axis
sobelxy = cv2.Sobel(src=frame, ddepth=cv2.CV_64F, dx=1, dy=1, ksize=5) # Combined X and Y Sobel Edge Detection
if args.draw:
cv2.imshow('Sobel X Y using Sobel() function', sobelxy)
cv2.waitKey(0)
cv2.destroyAllWindows()
if args.export:
cv2.imwrite(f"{output_folder}/{file}", sobelxy)
elif args.mode == "canny":
#edges = cv2.Canny(frame, 50, 150, apertureSize=5, L2gradient=True)
#edges = cv2.Canny(frame, 5, 20, apertureSize=3, L2gradient=True)
edges = cv2.Canny(frame, 10, 30, apertureSize=3, L2gradient=True)
# Autodetect. Doesn't work for our use case
# Source: https://towardsdatascience.com/easy-method-of-edge-detection-in-opencv-python-db26972deb2d
'''
sigma = 0.33
md = np.median(frame)
lower_value = int(max(0, (1.0-sigma) * md))
upper_value = int(min(255, (1.0+sigma) * md))
edges = cv2.Canny(frame, lower_value, upper_value)
'''
if args.draw:
cv2.imshow('Canny', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
if args.export:
cv2.imwrite(f"{output_folder}/{file}", edges)
elif args.mode == "roberts":
# 2x2 Robert's cross (original)
roberts_cross_v = np.array( [[1, 0 ], [0,-1 ]] )
roberts_cross_h = np.array( [[ 0, 1 ], [ -1, 0 ]] )
# 3x3 Robert's cross
'''
roberts_cross_v = np.array( [[ 0, 0, 0 ],
[ 0, 1, 0 ],
[ 0, 0,-1 ]] )
roberts_cross_h = np.array( [[ 0, 0, 0 ],
[ 0, 0, 1 ],
[ 0,-1, 0 ]] )
'''
img_roberts_cross_v = cv2.filter2D(frame, -1, roberts_cross_v)
img_roberts_cross_h = cv2.filter2D(frame, -1, roberts_cross_h)
edges = cv2.addWeighted(np.square(img_roberts_cross_v), 0.5, np.square(img_roberts_cross_h), 1, 0)
if args.draw:
cv2.imshow('Robert\'s cross', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
if args.export:
cv2.imwrite(f"{output_folder}/{file}", edges)
logging.log(56, "Script finished!")