-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcuSolverRf.cpp
801 lines (656 loc) · 25.5 KB
/
cuSolverRf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/*
* Copyright 2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
/*
* A framework of refactorization process.
*
* step 1: compute P*A*Q = L*U by
* - reordering and
* - LU with partial pivoting in cusolverSp
*
* step 2: set up cusolverRf by (P, Q, L, U)
*
* step 3: analyze and refactor A
*
* How to use
* ./cuSolverRf -P=symrcm -file <file>
* ./cuSolverRf -P=symamd -file <file>
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "cusolverSp.h"
#include "cusolverRf.h"
#include "helper_string.h"
#include "helper_cusolver.h"
#include "cusolverSp_LOWLEVEL_PREVIEW.h"
#include <cuda_runtime.h>
#include "helper_cuda.h"
template <typename T_ELEM>
int loadMMSparseMatrix(
char *filename,
char elem_type,
bool csrFormat,
int *m,
int *n,
int *nnz,
T_ELEM **aVal,
int **aRowInd,
int **aColInd,
int extendSymMatrix);
void UsageRF(void)
{
printf( "<options>\n");
printf( "-h : display this help\n");
printf( "-P=<name> : choose a reordering\n");
printf( " symrcm (Reverse Cuthill-McKee)\n");
printf( " symamd (Approximate Minimum Degree)\n");
printf( "-file=<filename> : filename containing a matrix in MM format\n");
printf( "-device=<device_id> : <device_id> if want to run on specific GPU\n");
exit( 0 );
}
void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts)
{
memset(&opts, 0, sizeof(opts));
if (checkCmdLineFlag(argc, (const char **)argv, "-h"))
{
UsageRF();
}
if (checkCmdLineFlag(argc, (const char **)argv, "P"))
{
char *reorderType = NULL;
getCmdLineArgumentString(argc, (const char **)argv, "P", &reorderType);
if (reorderType)
{
if ((STRCASECMP(reorderType, "symrcm") != 0) && (STRCASECMP(reorderType, "symamd") != 0))
{
printf("\nIncorrect argument passed to -P option\n");
UsageRF();
}
else
{
opts.reorder = reorderType;
}
}
}
if (!opts.reorder)
{
opts.reorder = "symrcm"; // Setting default reordering to be symrcm.
}
if (checkCmdLineFlag(argc, (const char **)argv, "file"))
{
char *fileName = 0;
getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName);
if (fileName)
{
opts.sparse_mat_filename = fileName;
}
else
{
printf("\nIncorrect filename passed to -file \n ");
UsageRF();
}
}
}
int main (int argc, char *argv[])
{
struct testOpts opts;
cusolverRfHandle_t cusolverRfH = NULL; // refactorization
cusolverSpHandle_t cusolverSpH = NULL; // reordering, permutation and 1st LU factorization
cusparseHandle_t cusparseH = NULL; // residual evaluation
cudaStream_t stream = NULL;
cusparseMatDescr_t descrA = NULL; // A is a base-0 general matrix
csrluInfoHost_t info = NULL; // opaque info structure for LU with parital pivoting
int rowsA = 0; // number of rows of A
int colsA = 0; // number of columns of A
int nnzA = 0; // number of nonzeros of A
int baseA = 0; // base index in CSR format
// cusolverRf only works for base-0
// cusolverRf only works for square matrix,
// assume n = rowsA = colsA
// CSR(A) from I/O
int *h_csrRowPtrA = NULL; // <int> n+1
int *h_csrColIndA = NULL; // <int> nnzA
double *h_csrValA = NULL; // <double> nnzA
int *h_Qreorder = NULL; // <int> n
// reorder to reduce zero fill-in
// Qreorder = symrcm(A) or Qreroder = symamd(A)
// B = Q*A*Q^T
int *h_csrRowPtrB = NULL; // <int> n+1
int *h_csrColIndB = NULL; // <int> nnzA
double *h_csrValB = NULL; // <double> nnzA
int *h_mapBfromA = NULL; // <int> nnzA
double *h_x = NULL; // <double> n, x = A \ b
double *h_b = NULL; // <double> n, b = ones(m,1)
double *h_r = NULL; // <double> n, r = b - A*x
// solve B*(Qx) = Q*b
double *h_xhat = NULL; // <double> n, Q*x_hat = x
double *h_bhat = NULL; // <double> n, b_hat = Q*b
size_t size_perm = 0;
size_t size_internal = 0;
size_t size_lu = 0; // size of working space for csrlu
void *buffer_cpu = NULL; // working space for
// - permutation: B = Q*A*Q^T
// - LU with partial pivoting in cusolverSp
// cusolverSp computes LU with partial pivoting
// Plu*B*Qlu^T = L*U
// where B = Q*A*Q^T
//
// nnzL and nnzU are not known until factorization is done.
// However upper bound of L+U is known after symbolic analysis of LU.
int *h_Plu = NULL; // <int> n
int *h_Qlu = NULL; // <int> n
int nnzL = 0;
int *h_csrRowPtrL = NULL; // <int> n+1
int *h_csrColIndL = NULL; // <int> nnzL
double *h_csrValL = NULL; // <double> nnzL
int nnzU = 0;
int *h_csrRowPtrU = NULL; // <int> n+1
int *h_csrColIndU = NULL; // <int> nnzU
double *h_csrValU = NULL; // <double> nnzU
int *h_P = NULL; // <int> n, P = Plu * Qreorder
int *h_Q = NULL; // <int> n, Q = Qlu * Qreorder
int *d_csrRowPtrA = NULL; // <int> n+1
int *d_csrColIndA = NULL; // <int> nnzA
double *d_csrValA = NULL; // <double> nnzA
double *d_x = NULL; // <double> n, x = A \ b
double *d_b = NULL; // <double> n, a copy of h_b
double *d_r = NULL; // <double> n, r = b - A*x
int *d_P = NULL; // <int> n, P*A*Q^T = L*U
int *d_Q = NULL; // <int> n
double *d_T = NULL; // working space in cusolverRfSolve
// |d_T| = n * nrhs
// the constants used in residual evaluation, r = b - A*x
const double minus_one = -1.0;
const double one = 1.0;
// the constants used in cusolverRf
// nzero is the value below which zero pivot is flagged.
// nboost is the value which is substitured for zero pivot.
double nzero = 0.0;
double nboost= 0.0;
// the constant used in cusolverSp
// singularity is -1 if A is invertible under tol
// tol determines the condition of singularity
// pivot_threshold decides pivoting strategy
int singularity = 0;
const double tol = 1.e-14;
const double pivot_threshold = 1.0;
// the constants used in cusolverRf
const cusolverRfFactorization_t fact_alg = CUSOLVERRF_FACTORIZATION_ALG0; // default
const cusolverRfTriangularSolve_t solve_alg = CUSOLVERRF_TRIANGULAR_SOLVE_ALG1; // default
double x_inf = 0.0; // |x|
double r_inf = 0.0; // |r|
double A_inf = 0.0; // |A|
int errors = 0;
double start, stop;
double time_reorder;
double time_perm;
double time_sp_analysis;
double time_sp_factor;
double time_sp_solve;
double time_sp_extract;
double time_rf_assemble;
double time_rf_reset;
double time_rf_refactor;
double time_rf_solve;
parseCommandLineArguments(argc, argv, opts);
printf("step 1.1: preparation\n");
printf("step 1.1: read matrix market format\n");
findCudaDevice(argc, (const char **)argv);
if (opts.sparse_mat_filename == NULL)
{
opts.sparse_mat_filename = sdkFindFilePath("lap2D_5pt_n100.mtx", argv[0]);
printf("Using default input file [%s]\n", opts.sparse_mat_filename);
}
else
{
printf("Using input file [%s]\n", opts.sparse_mat_filename);
}
if (opts.sparse_mat_filename)
{
if (loadMMSparseMatrix<double>(opts.sparse_mat_filename, 'd', true , &rowsA, &colsA,
&nnzA, &h_csrValA, &h_csrRowPtrA, &h_csrColIndA, true))
{
return 1;
}
baseA = h_csrRowPtrA[0]; // baseA = {0,1}
}
if ( rowsA != colsA )
{
fprintf(stderr, "Error: only support square matrix\n");
return 1;
}
printf("WARNING: cusolverRf only works for base-0 \n");
if (baseA)
{
for(int i = 0 ; i <= rowsA ; i++)
{
h_csrRowPtrA[i]--;
}
for(int i = 0 ; i < nnzA ; i++)
{
h_csrColIndA[i]--;
}
baseA = 0;
}
printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA, nnzA, baseA);
checkCudaErrors(cusolverSpCreate(&cusolverSpH));
checkCudaErrors(cusparseCreate(&cusparseH));
checkCudaErrors(cudaStreamCreate(&stream));
checkCudaErrors(cusolverSpSetStream(cusolverSpH, stream));
checkCudaErrors(cusparseSetStream(cusparseH, stream));
checkCudaErrors(cusparseCreateMatDescr(&descrA));
checkCudaErrors(cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL));
if (baseA)
{
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE));
}
else
{
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO));
}
h_Qreorder = (int*)malloc(sizeof(int)*colsA);
h_csrRowPtrB = (int* )malloc(sizeof(int)*(rowsA+1));
h_csrColIndB = (int* )malloc(sizeof(int)*nnzA);
h_csrValB = (double*)malloc(sizeof(double)*nnzA);
h_mapBfromA = (int* )malloc(sizeof(int)*nnzA);
h_x = (double*)malloc(sizeof(double)*colsA);
h_b = (double*)malloc(sizeof(double)*rowsA);
h_r = (double*)malloc(sizeof(double)*rowsA);
h_xhat = (double*)malloc(sizeof(double)*colsA);
h_bhat = (double*)malloc(sizeof(double)*rowsA);
assert(NULL != h_Qreorder);
assert(NULL != h_csrRowPtrB);
assert(NULL != h_csrColIndB);
assert(NULL != h_csrValB );
assert(NULL != h_mapBfromA);
assert(NULL != h_x);
assert(NULL != h_b);
assert(NULL != h_r);
assert(NULL != h_xhat);
assert(NULL != h_bhat);
checkCudaErrors(cudaMalloc((void **)&d_csrRowPtrA, sizeof(int)*(rowsA+1)));
checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int)*nnzA));
checkCudaErrors(cudaMalloc((void **)&d_csrValA , sizeof(double)*nnzA));
checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double)*colsA));
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double)*rowsA));
checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double)*rowsA));
checkCudaErrors(cudaMalloc((void **)&d_P, sizeof(int)*rowsA));
checkCudaErrors(cudaMalloc((void **)&d_Q, sizeof(int)*colsA));
checkCudaErrors(cudaMalloc((void **)&d_T, sizeof(double)*rowsA*1));
printf("step 1.2: set right hand side vector (b) to 1\n");
for(int row = 0 ; row < rowsA ; row++){
h_b[row] = 1.0;
}
printf("step 2: reorder the matrix to reduce zero fill-in\n");
printf(" Q = symrcm(A) or Q = symamd(A) \n");
start = second();
start = second();
if ( 0 == strcmp(opts.reorder, "symrcm") )
{
checkCudaErrors(cusolverSpXcsrsymrcmHost(
cusolverSpH, rowsA, nnzA,
descrA, h_csrRowPtrA, h_csrColIndA,
h_Qreorder));
}
else if ( 0 == strcmp(opts.reorder, "symamd") )
{
checkCudaErrors(cusolverSpXcsrsymamdHost(
cusolverSpH, rowsA, nnzA,
descrA, h_csrRowPtrA, h_csrColIndA,
h_Qreorder));
}
else
{
fprintf(stderr, "Error: %s is unknow reordering\n", opts.reorder);
return 1;
}
stop = second();
time_reorder = stop - start;
printf("step 3: B = Q*A*Q^T\n");
memcpy(h_csrRowPtrB, h_csrRowPtrA, sizeof(int)*(rowsA+1));
memcpy(h_csrColIndB, h_csrColIndA, sizeof(int)*nnzA);
start = second();
start = second();
checkCudaErrors(cusolverSpXcsrperm_bufferSizeHost(
cusolverSpH, rowsA, colsA, nnzA,
descrA, h_csrRowPtrB, h_csrColIndB,
h_Qreorder, h_Qreorder,
&size_perm));
if (buffer_cpu) {
free(buffer_cpu);
}
buffer_cpu = (void*)malloc(sizeof(char)*size_perm);
assert(NULL != buffer_cpu);
// h_mapBfromA = Identity
for(int j = 0 ; j < nnzA ; j++){
h_mapBfromA[j] = j;
}
checkCudaErrors(cusolverSpXcsrpermHost(
cusolverSpH, rowsA, colsA, nnzA,
descrA, h_csrRowPtrB, h_csrColIndB,
h_Qreorder, h_Qreorder,
h_mapBfromA,
buffer_cpu));
// B = A( mapBfromA )
for(int j = 0 ; j < nnzA ; j++){
h_csrValB[j] = h_csrValA[ h_mapBfromA[j] ];
}
stop = second();
time_perm = stop - start;
printf("step 4: solve A*x = b by LU(B) in cusolverSp\n");
printf("step 4.1: create opaque info structure\n");
checkCudaErrors(cusolverSpCreateCsrluInfoHost(&info));
printf("step 4.2: analyze LU(B) to know structure of Q and R, and upper bound for nnz(L+U)\n");
start = second();
start = second();
checkCudaErrors(cusolverSpXcsrluAnalysisHost(
cusolverSpH, rowsA, nnzA,
descrA, h_csrRowPtrB, h_csrColIndB,
info));
stop = second();
time_sp_analysis = stop - start;
printf("step 4.3: workspace for LU(B)\n");
checkCudaErrors(cusolverSpDcsrluBufferInfoHost(
cusolverSpH, rowsA, nnzA,
descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
info,
&size_internal,
&size_lu));
if (buffer_cpu) {
free(buffer_cpu);
}
buffer_cpu = (void*)malloc(sizeof(char)*size_lu);
assert(NULL != buffer_cpu);
printf("step 4.4: compute Ppivot*B = L*U \n");
start = second();
start = second();
checkCudaErrors(cusolverSpDcsrluFactorHost(
cusolverSpH, rowsA, nnzA,
descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
info, pivot_threshold,
buffer_cpu));
stop = second();
time_sp_factor = stop - start;
// TODO: check singularity by tol
printf("step 4.5: check if the matrix is singular \n");
checkCudaErrors(cusolverSpDcsrluZeroPivotHost(
cusolverSpH, info, tol, &singularity));
if ( 0 <= singularity){
fprintf(stderr, "Error: A is not invertible, singularity=%d\n", singularity);
return 1;
}
printf("step 4.6: solve A*x = b \n");
printf(" i.e. solve B*(Qx) = Q*b \n");
start = second();
start = second();
// b_hat = Q*b
for(int j = 0 ; j < rowsA ; j++){
h_bhat[j] = h_b[h_Qreorder[j]];
}
// B*x_hat = b_hat
checkCudaErrors(cusolverSpDcsrluSolveHost(
cusolverSpH, rowsA, h_bhat, h_xhat, info, buffer_cpu));
// x = Q^T * x_hat
for(int j = 0 ; j < rowsA ; j++){
h_x[h_Qreorder[j]] = h_xhat[j];
}
stop = second();
time_sp_solve = stop - start;
printf("step 4.7: evaluate residual r = b - A*x (result on CPU)\n");
// use GPU gemv to compute r = b - A*x
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA, sizeof(int)*(rowsA+1), cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int)*nnzA , cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrValA , h_csrValA , sizeof(double)*nnzA , cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_r, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_x, h_x, sizeof(double)*colsA, cudaMemcpyHostToDevice));
/* Wrap raw data into cuSPARSE generic API objects */
cusparseSpMatDescr_t matA = NULL;
if (baseA)
{
checkCudaErrors(cusparseCreateCsr(
&matA, rowsA, colsA, nnzA, d_csrRowPtrA, d_csrColIndA, d_csrValA, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ONE, CUDA_R_64F));
}
else
{
checkCudaErrors(cusparseCreateCsr(
&matA, rowsA, colsA, nnzA, d_csrRowPtrA, d_csrColIndA, d_csrValA, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F));
}
cusparseDnVecDescr_t vecx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecx, colsA, d_x, CUDA_R_64F));
cusparseDnVecDescr_t vecAx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecAx, rowsA, d_r, CUDA_R_64F));
/* Allocate workspace for cuSPARSE */
size_t bufferSize = 0;
checkCudaErrors(cusparseSpMV_bufferSize(
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx,
&one, vecAx, CUDA_R_64F, CUSPARSE_MV_ALG_DEFAULT, &bufferSize));
void *buffer = NULL;
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
checkCudaErrors(cusparseSpMV(
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx,
&one, vecAx, CUDA_R_64F, CUSPARSE_MV_ALG_DEFAULT, &buffer));
checkCudaErrors(cudaMemcpy(h_r, d_r, sizeof(double)*rowsA, cudaMemcpyDeviceToHost));
x_inf = vec_norminf(colsA, h_x);
r_inf = vec_norminf(rowsA, h_r);
A_inf = csr_mat_norminf(rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA, h_csrColIndA);
printf("(CPU) |b - A*x| = %E \n", r_inf);
printf("(CPU) |A| = %E \n", A_inf);
printf("(CPU) |x| = %E \n", x_inf);
printf("(CPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf/(A_inf * x_inf));
printf("step 5: extract P, Q, L and U from P*B*Q^T = L*U \n");
printf(" L has implicit unit diagonal\n");
start = second();
start = second();
checkCudaErrors(cusolverSpXcsrluNnzHost(
cusolverSpH,
&nnzL,
&nnzU,
info));
h_Plu = (int*)malloc(sizeof(int)*rowsA);
h_Qlu = (int*)malloc(sizeof(int)*colsA);
h_csrValL = (double*)malloc(sizeof(double)*nnzL);
h_csrRowPtrL = (int*)malloc(sizeof(int)*(rowsA+1));
h_csrColIndL = (int*)malloc(sizeof(int)*nnzL);
h_csrValU = (double*)malloc(sizeof(double)*nnzU);
h_csrRowPtrU = (int*)malloc(sizeof(int)*(rowsA+1));
h_csrColIndU = (int*)malloc(sizeof(int)*nnzU);
assert(NULL != h_Plu);
assert(NULL != h_Qlu);
assert(NULL != h_csrValL);
assert(NULL != h_csrRowPtrL);
assert(NULL != h_csrColIndL);
assert(NULL != h_csrValU);
assert(NULL != h_csrRowPtrU);
assert(NULL != h_csrColIndU);
checkCudaErrors(cusolverSpDcsrluExtractHost(
cusolverSpH,
h_Plu,
h_Qlu,
descrA,
h_csrValL,
h_csrRowPtrL,
h_csrColIndL,
descrA,
h_csrValU,
h_csrRowPtrU,
h_csrColIndU,
info,
buffer_cpu));
stop = second();
time_sp_extract = stop - start;
printf("nnzL = %d, nnzU = %d\n", nnzL, nnzU);
/* B = Qreorder*A*Qreorder^T
* Plu*B*Qlu^T = L*U
*
* (Plu*Qreorder)*A*(Qlu*Qreorder)^T = L*U
*
* Let P = Plu*Qreroder, Q = Qlu*Qreorder,
* then we have
* P*A*Q^T = L*U
* which is the fundamental relation in cusolverRf.
*/
printf("step 6: form P*A*Q^T = L*U\n");
h_P = (int*)malloc(sizeof(int)*rowsA);
h_Q = (int*)malloc(sizeof(int)*colsA);
assert(NULL != h_P);
assert(NULL != h_Q);
printf("step 6.1: P = Plu*Qreroder\n");
// gather operation, P = Qreorder(Plu)
for(int j = 0 ; j < rowsA ; j++){
h_P[j] = h_Qreorder[h_Plu[j]];
}
printf("step 6.2: Q = Qlu*Qreorder \n");
// gather operation, Q = Qreorder(Qlu)
for(int j = 0 ; j < colsA ; j++){
h_Q[j] = h_Qreorder[h_Qlu[j]];
}
printf("step 7: create cusolverRf handle\n");
checkCudaErrors(cusolverRfCreate(&cusolverRfH));
printf("step 8: set parameters for cusolverRf \n");
// numerical values for checking "zeros" and for boosting.
checkCudaErrors(cusolverRfSetNumericProperties(cusolverRfH, nzero, nboost));
// choose algorithm for refactorization and solve
checkCudaErrors(cusolverRfSetAlgs(cusolverRfH, fact_alg, solve_alg));
// matrix mode: L and U are CSR format, and L has implicit unit diagonal
checkCudaErrors(cusolverRfSetMatrixFormat(
cusolverRfH, CUSOLVERRF_MATRIX_FORMAT_CSR, CUSOLVERRF_UNIT_DIAGONAL_ASSUMED_L));
// fast mode for matrix assembling
checkCudaErrors(cusolverRfSetResetValuesFastMode(
cusolverRfH, CUSOLVERRF_RESET_VALUES_FAST_MODE_ON));
printf("step 9: assemble P*A*Q = L*U \n");
start = second();
start = second();
checkCudaErrors(cusolverRfSetupHost(
rowsA, nnzA,
h_csrRowPtrA, h_csrColIndA, h_csrValA,
nnzL,
h_csrRowPtrL, h_csrColIndL, h_csrValL,
nnzU,
h_csrRowPtrU, h_csrColIndU, h_csrValU,
h_P,
h_Q,
cusolverRfH));
checkCudaErrors(cudaDeviceSynchronize());
stop = second();
time_rf_assemble = stop - start;
printf("step 10: analyze to extract parallelism \n");
checkCudaErrors(cusolverRfAnalyze(cusolverRfH));
printf("step 11: import A to cusolverRf \n");
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA, sizeof(int)*(rowsA+1), cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int)*nnzA , cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrValA , h_csrValA , sizeof(double)*nnzA , cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_P, h_P, sizeof(int)*rowsA, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_Q, h_Q, sizeof(int)*colsA, cudaMemcpyHostToDevice));
start = second();
start = second();
checkCudaErrors(cusolverRfResetValues(
rowsA,nnzA,
d_csrRowPtrA, d_csrColIndA, d_csrValA,
d_P,
d_Q,
cusolverRfH));
checkCudaErrors(cudaDeviceSynchronize());
stop = second();
time_rf_reset = stop - start;
printf("step 12: refactorization \n");
start = second();
start = second();
checkCudaErrors(cusolverRfRefactor(cusolverRfH));
checkCudaErrors(cudaDeviceSynchronize());
stop = second();
time_rf_refactor = stop - start;
printf("step 13: solve A*x = b \n");
checkCudaErrors(cudaMemcpy(d_x, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice));
start = second();
start = second();
checkCudaErrors(cusolverRfSolve(cusolverRfH, d_P, d_Q, 1, d_T, rowsA, d_x, rowsA));
checkCudaErrors(cudaDeviceSynchronize());
stop = second();
time_rf_solve = stop - start;
printf("step 14: evaluate residual r = b - A*x (result on GPU)\n");
checkCudaErrors(cudaMemcpy(d_r, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice));
checkCudaErrors(cusparseSpMV(
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx,
&one, vecAx, CUDA_R_64F, CUSPARSE_MV_ALG_DEFAULT, &buffer));
checkCudaErrors(cudaMemcpy(h_x, d_x, sizeof(double)*colsA, cudaMemcpyDeviceToHost));
checkCudaErrors(cudaMemcpy(h_r, d_r, sizeof(double)*rowsA, cudaMemcpyDeviceToHost));
x_inf = vec_norminf(colsA, h_x);
r_inf = vec_norminf(rowsA, h_r);
printf("(GPU) |b - A*x| = %E \n", r_inf);
printf("(GPU) |A| = %E \n", A_inf);
printf("(GPU) |x| = %E \n", x_inf);
printf("(GPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf/(A_inf * x_inf));
printf("===== statistics \n");
printf(" nnz(A) = %d, nnz(L+U) = %d, zero fill-in ratio = %f\n",
nnzA, nnzL + nnzU, ((double)(nnzL+nnzU))/(double)nnzA);
printf("\n");
printf("===== timing profile \n");
printf(" reorder A : %f sec\n", time_reorder);
printf(" B = Q*A*Q^T : %f sec\n", time_perm);
printf("\n");
printf(" cusolverSp LU analysis: %f sec\n", time_sp_analysis);
printf(" cusolverSp LU factor : %f sec\n", time_sp_factor);
printf(" cusolverSp LU solve : %f sec\n", time_sp_solve);
printf(" cusolverSp LU extract : %f sec\n", time_sp_extract);
printf("\n");
printf(" cusolverRf assemble : %f sec\n", time_rf_assemble);
printf(" cusolverRf reset : %f sec\n", time_rf_reset);
printf(" cusolverRf refactor : %f sec\n", time_rf_refactor);
printf(" cusolverRf solve : %f sec\n", time_rf_solve);
if (cusolverRfH) { checkCudaErrors(cusolverRfDestroy(cusolverRfH)); }
if (cusolverSpH) { checkCudaErrors(cusolverSpDestroy(cusolverSpH)); }
if (cusparseH ) { checkCudaErrors(cusparseDestroy(cusparseH)); }
if (stream ) { checkCudaErrors(cudaStreamDestroy(stream)); }
if (descrA ) { checkCudaErrors(cusparseDestroyMatDescr(descrA)); }
if (info ) { checkCudaErrors(cusolverSpDestroyCsrluInfoHost(info)); }
if (matA ) { checkCudaErrors(cusparseDestroySpMat(matA)); }
if (vecx ) { checkCudaErrors(cusparseDestroyDnVec(vecx)); }
if (vecAx ) { checkCudaErrors(cusparseDestroyDnVec(vecAx)); }
if (h_csrValA ) { free(h_csrValA); }
if (h_csrRowPtrA) { free(h_csrRowPtrA); }
if (h_csrColIndA) { free(h_csrColIndA); }
if (h_Qreorder ) { free(h_Qreorder); }
if (h_csrRowPtrB) { free(h_csrRowPtrB); }
if (h_csrColIndB) { free(h_csrColIndB); }
if (h_csrValB ) { free(h_csrValB ); }
if (h_mapBfromA ) { free(h_mapBfromA ); }
if (h_x ) { free(h_x); }
if (h_b ) { free(h_b); }
if (h_r ) { free(h_r); }
if (h_xhat) { free(h_xhat); }
if (h_bhat) { free(h_bhat); }
if (buffer_cpu) { free(buffer_cpu); }
if (h_Plu) { free(h_Plu); }
if (h_Qlu) { free(h_Qlu); }
if (h_csrRowPtrL) { free(h_csrRowPtrL); }
if (h_csrColIndL) { free(h_csrColIndL); }
if (h_csrValL ) { free(h_csrValL ); }
if (h_csrRowPtrU) { free(h_csrRowPtrU); }
if (h_csrColIndU) { free(h_csrColIndU); }
if (h_csrValU ) { free(h_csrValU ); }
if (h_P) { free(h_P); }
if (h_Q) { free(h_Q); }
if (d_csrValA ) { checkCudaErrors(cudaFree(d_csrValA)); }
if (d_csrRowPtrA) { checkCudaErrors(cudaFree(d_csrRowPtrA)); }
if (d_csrColIndA) { checkCudaErrors(cudaFree(d_csrColIndA)); }
if (d_x) { checkCudaErrors(cudaFree(d_x)); }
if (d_b) { checkCudaErrors(cudaFree(d_b)); }
if (d_r) { checkCudaErrors(cudaFree(d_r)); }
if (d_P) { checkCudaErrors(cudaFree(d_P)); }
if (d_Q) { checkCudaErrors(cudaFree(d_Q)); }
if (d_T) { checkCudaErrors(cudaFree(d_T)); }
return 0;
}