-
Notifications
You must be signed in to change notification settings - Fork 213
/
train.py
executable file
·152 lines (128 loc) · 5.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from __future__ import print_function
import os
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import argparse
import torch.utils.data as data
from data import AnnotationTransform, VOCDetection, detection_collate, preproc, cfg
from layers.modules import MultiBoxLoss
from layers.functions.prior_box import PriorBox
import time
import datetime
import math
from models.faceboxes import FaceBoxes
parser = argparse.ArgumentParser(description='FaceBoxes Training')
parser.add_argument('--training_dataset', default='./data/WIDER_FACE', help='Training dataset directory')
parser.add_argument('-b', '--batch_size', default=32, type=int, help='Batch size for training')
parser.add_argument('--num_workers', default=8, type=int, help='Number of workers used in dataloading')
parser.add_argument('--ngpu', default=2, type=int, help='gpus')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--resume_net', default=None, help='resume net for retraining')
parser.add_argument('--resume_epoch', default=0, type=int, help='resume iter for retraining')
parser.add_argument('-max', '--max_epoch', default=300, type=int, help='max epoch for retraining')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD')
parser.add_argument('--save_folder', default='./weights/', help='Location to save checkpoint models')
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
img_dim = 1024 # only 1024 is supported
rgb_mean = (104, 117, 123) # bgr order
num_classes = 2
num_gpu = args.ngpu
num_workers = args.num_workers
batch_size = args.batch_size
momentum = args.momentum
weight_decay = args.weight_decay
initial_lr = args.lr
gamma = args.gamma
max_epoch = args.max_epoch
training_dataset = args.training_dataset
save_folder = args.save_folder
gpu_train = cfg['gpu_train']
net = FaceBoxes('train', img_dim, num_classes)
print("Printing net...")
print(net)
if args.resume_net is not None:
print('Loading resume network...')
state_dict = torch.load(args.resume_net)
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
if num_gpu > 1 and gpu_train:
net = torch.nn.DataParallel(net, device_ids=list(range(num_gpu)))
device = torch.device('cuda:0' if gpu_train else 'cpu')
cudnn.benchmark = True
net = net.to(device)
optimizer = optim.SGD(net.parameters(), lr=initial_lr, momentum=momentum, weight_decay=weight_decay)
criterion = MultiBoxLoss(num_classes, 0.35, True, 0, True, 7, 0.35, False)
priorbox = PriorBox(cfg, image_size=(img_dim, img_dim))
with torch.no_grad():
priors = priorbox.forward()
priors = priors.to(device)
def train():
net.train()
epoch = 0 + args.resume_epoch
print('Loading Dataset...')
dataset = VOCDetection(training_dataset, preproc(img_dim, rgb_mean), AnnotationTransform())
epoch_size = math.ceil(len(dataset) / batch_size)
max_iter = max_epoch * epoch_size
stepvalues = (200 * epoch_size, 250 * epoch_size)
step_index = 0
if args.resume_epoch > 0:
start_iter = args.resume_epoch * epoch_size
else:
start_iter = 0
for iteration in range(start_iter, max_iter):
if iteration % epoch_size == 0:
# create batch iterator
batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, collate_fn=detection_collate))
if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > 200):
torch.save(net.state_dict(), save_folder + 'FaceBoxes_epoch_' + str(epoch) + '.pth')
epoch += 1
load_t0 = time.time()
if iteration in stepvalues:
step_index += 1
lr = adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size)
# load train data
images, targets = next(batch_iterator)
images = images.to(device)
targets = [anno.to(device) for anno in targets]
# forward
out = net(images)
# backprop
optimizer.zero_grad()
loss_l, loss_c = criterion(out, priors, targets)
loss = cfg['loc_weight'] * loss_l + loss_c
loss.backward()
optimizer.step()
load_t1 = time.time()
batch_time = load_t1 - load_t0
eta = int(batch_time * (max_iter - iteration))
print('Epoch:{}/{} || Epochiter: {}/{} || Iter: {}/{} || L: {:.4f} C: {:.4f} || LR: {:.8f} || Batchtime: {:.4f} s || ETA: {}'.format(epoch, max_epoch, (iteration % epoch_size) + 1, epoch_size, iteration + 1, max_iter, loss_l.item(), loss_c.item(), lr, batch_time, str(datetime.timedelta(seconds=eta))))
torch.save(net.state_dict(), save_folder + 'Final_FaceBoxes.pth')
def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
warmup_epoch = -1
if epoch <= warmup_epoch:
lr = 1e-6 + (initial_lr-1e-6) * iteration / (epoch_size * warmup_epoch)
else:
lr = initial_lr * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
train()