-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig.py
193 lines (166 loc) · 11.9 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os.path as osp
import numpy as np
import random
import torch
from easydict import EasyDict as edict
import argparse
class cfg():
def __init__(self):
self.this_dir = osp.dirname(__file__)
# change
self.data_root = osp.abspath(osp.join(self.this_dir, '..', '..', 'data', ''))
def get_args(self):
parser = argparse.ArgumentParser()
# base
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--epoch', default=100, type=int)
parser.add_argument("--save_model", default=0, type=int, choices=[0, 1])
parser.add_argument("--only_test", default=0, type=int, choices=[0, 1])
# torthlight
parser.add_argument("--no_tensorboard", default=False, action="store_true")
parser.add_argument("--exp_name", default="EA_exp", type=str, help="Experiment name")
parser.add_argument("--dump_path", default="dump/", type=str, help="Experiment dump path")
parser.add_argument("--exp_id", default="001", type=str, help="Experiment ID")
parser.add_argument("--random_seed", default=42, type=int)
parser.add_argument("--data_path", default="mmkg", type=str, help="Experiment path")
# --------- EA -----------
parser.add_argument("--data_choice", default="DBP15K", type=str, choices=["DBP15K", "DWY", "FBYG15K", "FBDB15K"], help="Experiment path")
parser.add_argument("--data_rate", type=float, default=0.3, help="training set rate")
# parser.add_argument("--data_rate", type=float, default=0.3, choices=[0.2, 0.3, 0.5, 0.8], help="training set rate")
# TODO: add some dynamic variable
parser.add_argument("--model_name", default="MEAformer", type=str, choices=["EVA", "MCLEA", "MSNEA", "MEAformer"], help="model name")
parser.add_argument("--model_name_save", default="", type=str, help="model name for model load")
parser.add_argument('--workers', type=int, default=8)
parser.add_argument('--accumulation_steps', type=int, default=1)
parser.add_argument("--scheduler", default="linear", type=str, choices=["linear", "cos", "fixed"])
parser.add_argument("--optim", default="adamw", type=str, choices=["adamw", "adam"])
parser.add_argument('--lr', type=float, default=3e-5)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument("--adam_epsilon", default=1e-8, type=float)
parser.add_argument('--eval_epoch', default=100, type=int, help='evaluate each n epoch')
parser.add_argument("--enable_sota", action="store_true", default=False)
parser.add_argument('--margin', default=1, type=float, help='The fixed margin in loss function. ')
parser.add_argument('--emb_dim', default=1000, type=int, help='The embedding dimension in KGE model.')
parser.add_argument('--adv_temp', default=1.0, type=float, help='The temperature of sampling in self-adversarial negative sampling.')
parser.add_argument("--contrastive_loss", default=0, type=int, choices=[0, 1])
parser.add_argument('--clip', type=float, default=1., help='gradient clipping')
# --------- EVA -----------
parser.add_argument("--data_split", default="fr_en", type=str, help="Experiment split", choices=["dbp_wd_15k_V2", "dbp_wd_15k_V1", "zh_en", "ja_en", "fr_en", "norm"])
parser.add_argument("--hidden_units", type=str, default="128,128,128", help="hidden units in each hidden layer(including in_dim and out_dim), splitted with comma")
parser.add_argument("--dropout", type=float, default=0.0, help="dropout rate for layers")
parser.add_argument("--attn_dropout", type=float, default=0.0, help="dropout rate for gat layers")
parser.add_argument("--distance", type=int, default=2, help="L1 distance or L2 distance. ('1', '2')", choices=[1, 2])
parser.add_argument("--csls", action="store_true", default=False, help="use CSLS for inference")
parser.add_argument("--csls_k", type=int, default=10, help="top k for csls")
parser.add_argument("--il", action="store_true", default=False, help="Iterative learning?")
parser.add_argument("--semi_learn_step", type=int, default=10, help="If IL, what's the update step?")
parser.add_argument("--il_start", type=int, default=500, help="If Il, when to start?")
parser.add_argument("--unsup", action="store_true", default=False)
parser.add_argument("--unsup_k", type=int, default=1000, help="|visual seed|")
# --------- MCLEA -----------
parser.add_argument("--unsup_mode", type=str, default="img", help="unsup mode", choices=["img", "name", "char"])
parser.add_argument("--tau", type=float, default=0.1, help="the temperature factor of contrastive loss")
parser.add_argument("--alpha", type=float, default=0.2, help="the margin of InfoMaxNCE loss")
parser.add_argument("--with_weight", type=int, default=1, help="Whether to weight the fusion of different ")
parser.add_argument("--structure_encoder", type=str, default="gat", help="the encoder of structure view", choices=["gat", "gcn"])
parser.add_argument("--ab_weight", type=float, default=0.5, help="the weight of NTXent Loss")
parser.add_argument("--projection", action="store_true", default=False, help="add projection for model")
parser.add_argument("--heads", type=str, default="2,2", help="heads in each gat layer, splitted with comma")
parser.add_argument("--instance_normalization", action="store_true", default=False, help="enable instance normalization")
parser.add_argument("--attr_dim", type=int, default=100, help="the hidden size of attr and rel features")
parser.add_argument("--img_dim", type=int, default=100, help="the hidden size of img feature")
parser.add_argument("--name_dim", type=int, default=100, help="the hidden size of name feature")
parser.add_argument("--char_dim", type=int, default=100, help="the hidden size of char feature")
parser.add_argument("--w_gcn", action="store_false", default=True, help="with gcn features")
parser.add_argument("--w_rel", action="store_false", default=True, help="with rel features")
parser.add_argument("--w_attr", action="store_false", default=True, help="with attr features")
parser.add_argument("--w_name", action="store_false", default=True, help="with name features")
parser.add_argument("--w_char", action="store_false", default=True, help="with char features")
parser.add_argument("--w_img", action="store_false", default=True, help="with img features")
parser.add_argument("--use_surface", type=int, default=0, help="whether to use the surface")
parser.add_argument("--inner_view_num", type=int, default=6, help="the number of inner view")
parser.add_argument("--word_embedding", type=str, default="glove", help="the type of word embedding, [glove|fasttext]", choices=["glove", "bert"])
# projection head
parser.add_argument("--use_project_head", action="store_true", default=False, help="use projection head")
parser.add_argument("--zoom", type=float, default=0.1, help="narrow the range of losses")
parser.add_argument("--reduction", type=str, default="mean", help="[sum|mean]", choices=["sum", "mean"])
# --------- MEAformer -----------
parser.add_argument("--hidden_size", type=int, default=100, help="the hidden size of MEAformer")
parser.add_argument("--intermediate_size", type=int, default=400, help="the hidden size of MEAformer")
parser.add_argument("--num_attention_heads", type=int, default=5, help="the number of attention_heads of MEAformer")
parser.add_argument("--num_hidden_layers", type=int, default=2, help="the number of hidden_layers of MEAformer")
parser.add_argument("--position_embedding_type", default="absolute", type=str)
parser.add_argument("--use_intermediate", type=int, default=1, help="whether to use_intermediate")
parser.add_argument("--replay", type=int, default=0, help="whether to use replay strategy")
parser.add_argument("--neg_cross_kg", type=int, default=0, help="whether to force the negative samples in the opposite KG")
# --------- MSNEA -----------
parser.add_argument("--dim", type=int, default=100, help="the hidden size of MSNEA")
parser.add_argument("--neg_triple_num", type=int, default=1, help="neg triple num")
parser.add_argument("--use_bert", type=int, default=0)
parser.add_argument("--use_attr_value", type=int, default=0)
# parser.add_argument("--learning_rate", type=int, default=0.001)
# parser.add_argument("--optimizer", type=str, default="Adam")
# parser.add_argument("--max_epoch", type=int, default=200)
# parser.add_argument("--save_path", type=str, default="save_pkl", help="save path")
# ------------ Para ------------
parser.add_argument('--rank', type=int, default=0, help='rank to dist')
parser.add_argument('--dist', type=int, default=0, help='whether to dist')
parser.add_argument('--device', default='cuda', help='device id (i.e. 0 or 0,1 or cpu)')
parser.add_argument('--world-size', default=3, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
parser.add_argument("--local_rank", default=-1, type=int)
self.cfg = parser.parse_args()
def update_train_configs(self):
# add some constraint for parameters
# e.g. cannot save and test at the same time
assert not (self.cfg.save_model and self.cfg.only_test)
# update some dynamic variable
self.cfg.data_root = self.data_root
if self.cfg.use_surface:
self.cfg.w_name = True
self.cfg.w_char = True
else:
self.cfg.w_name = False
self.cfg.w_char = False
if self.cfg.data_choice in ["FBYG15K", "FBDB15K"]:
self.cfg.use_intermediate = 0
self.cfg.data_split = "norm"
self.cfg.inner_view_num = 4
# assert self.cfg.data_rate in [0.2, 0.5, 0.8]
self.cfg.w_name = False
self.cfg.w_char = False
self.cfg.use_surface = 0
data_split_name = f"{self.cfg.data_rate}_"
else:
data_split_name = f"{self.cfg.data_split}_"
if self.cfg.w_name and self.cfg.w_char:
data_split_name = f"{data_split_name}with_surface_"
self.cfg.exp_id = f"{self.cfg.model_name}_{self.cfg.data_choice}_{data_split_name}{self.cfg.exp_id}"
self.cfg.data_path = osp.join(self.data_root, self.cfg.data_path)
self.cfg.dump_path = osp.join(self.cfg.data_path, self.cfg.dump_path)
if self.cfg.only_test == 1:
self.save_model = 0
self.dist = 0
# --------- MSNEA -----------
self.cfg.dim = self.cfg.attr_dim
# --------- MEAformer -----------
self.cfg.max_position_embeddings = self.cfg.inner_view_num + 1
assert self.cfg.hidden_size == self.cfg.attr_dim
# use SOTA param
if self.cfg.enable_sota:
if self.cfg.il:
self.cfg.eval_epoch = max(2, self.cfg.eval_epoch)
self.cfg.weight_decay = max(0.0005, self.cfg.weight_decay)
if self.cfg.data_rate > 0.5:
self.cfg.weight_decay = max(0.001, self.cfg.weight_decay)
if self.cfg.data_choice == "DBP15K":
if not self.cfg.use_surface:
self.cfg.weight_decay = max(0.001, self.cfg.weight_decay)
else:
if self.cfg.data_choice == "DBP15K" or "FBYG" in self.cfg.data_choice:
self.cfg.epoch = 250
else:
self.cfg.epoch = 500
return self.cfg