本文以 STM32f103ze 为例,介绍了 AWTK 在 RTOS 上移植的经验。与其说移植,倒不如说是集成。所做的事情不过是把 AWTK 放到 RTOS 的一个线程中执行而已。
AWTK 已经移植到 STM32f103ze 裸系统上,为了简单起见,直接在 awtk-stm32f103ze-raw 基础上加入 RT-Thread 支持。
- 在 Keil 中增加下列文件:
rtthread/
rtthread/bsp
rtthread/cortex-m3
rtthread/cortex-m3/context_gcc.S
rtthread/cortex-m3/context_iar.S
rtthread/cortex-m3/context_rvds.S
rtthread/cortex-m3/cpuport.c
rtthread/cortex-m3/SConscript
rtthread/include
rtthread/include/libc
rtthread/include/libc/libc_dirent.h
rtthread/include/libc/libc_errno.h
rtthread/include/libc/libc_fcntl.h
rtthread/include/libc/libc_fdset.h
rtthread/include/libc/libc_ioctl.h
rtthread/include/libc/libc_signal.h
rtthread/include/libc/libc_stat.h
rtthread/include/rtdbg.h
rtthread/include/rtdebug.h
rtthread/include/rtdef.h
rtthread/include/rthw.h
rtthread/include/rtlibc.h
rtthread/include/rtm.h
rtthread/include/rtservice.h
rtthread/include/rtthread.h
rtthread/rtconfig.h
rtthread/src
rtthread/src/clock.c
rtthread/src/cpu.c
rtthread/src/device.c
rtthread/src/idle.c
rtthread/src/ipc.c
rtthread/src/irq.c
rtthread/src/Kconfig
rtthread/src/kservice.c
rtthread/src/mem.c
rtthread/src/memheap.c
rtthread/src/mempool.c
rtthread/src/object.c
rtthread/src/scheduler.c
rtthread/src/SConscript
rtthread/src/signal.c
rtthread/src/slab.c
rtthread/src/thread.c
rtthread/src/timer.c
- 增加 include 的路径
rtthread
rtthread/include
- 修改配置文件
根据自己的需要修改配置 rtthread/rtconfig.h
一般来说不需要修改,使用官方提供的即可。我用的是 stm32f103-mini-system 项目中的。
src/platforms/rtt/mutex.c
src/platforms/rtt/semaphore.c
src/platforms/rtt/thread.c
src/platforms/common/sys_tick.c
参考stm32/libraries/HAL_Drivers/drv_common.c和components.c修改的。
#include "rthw.h"
#include "rtthread.h"
static bool_t s_kernel_inited = FALSE;
static bool_t rtos_is_inited(void) {
return s_kernel_inited;
}
static uint32_t s_heap[4 * 1024];
ret_t rtos_init(void) {
rt_hw_interrupt_disable();
/* show version */
rt_show_version();
#ifdef RT_USING_HEAP
rt_system_heap_init((void*)s_heap, s_heap + sizeof(s_heap) / sizeof(s_heap[0]));
#endif
/* initialize scheduler system */
rt_system_scheduler_init();
/* initialize timer */
rt_system_timer_init();
/* initialize timer thread */
rt_system_timer_thread_init();
/* initialize idle thread */
rt_thread_idle_init();
s_kernel_inited = TRUE;
return RET_OK;
}
ret_t rtos_start(void) {
/* start scheduler */
rt_system_scheduler_start();
return RET_OK;
}
void rtos_tick(void) {
if (rtos_is_inited()) {
rt_interrupt_enter();
rt_tick_increase();
rt_interrupt_leave();
}
}
void rtos_delay(uint32_t ms) {
rt_thread_delay(ms);
}
由于线程的栈是由RTT分配的,所以RTT的heap要稍微大一点。
extern ret_t platform_prepare(void);
extern void sys_tick_enable(bool_t enable);
extern int gui_app_start(int lcd_w, int lcd_h);
void* awtk_thread(void* args) {
gui_app_start(tftlcd_data.width, tftlcd_data.height);
return NULL;
}
static ret_t awtk_start_ui_thread(void) {
tk_thread_t* ui_thread = tk_thread_create(awtk_thread, NULL);
return_value_if_fail(ui_thread != NULL, RET_BAD_PARAMS);
tk_thread_set_priority(ui_thread, 3);
tk_thread_set_name(ui_thread, "awtk");
tk_thread_set_stack_size(ui_thread, 8000);
return tk_thread_start(ui_thread);
}
void hardware_prepare(void) {
SysTick_Init();
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
LED_Init();
USART1_Init(9600);
TFTLCD_Init();
KEY_Init();
TOUCH_Init();
TIM3_Init(50,7199);
RTC_Init();
LCD_Clear(RED);
}
int main() {
hardware_prepare();
platform_prepare();
sys_tick_enable(TRUE);
rtos_init();
awtk_start_ui_thread();
rtos_start();
return 0;
}
这里与裸系统不同的地方,主要有两个:
-
- 在线程中启动 AWTK。
-
- 要提前调用 platform_prepare,platform_prepare 负责初始化内存,放在 tk_init 中就有些晚,需要单独提出来调用。
为此 platform_prepare 函数做了防重复调用的处理。
ret_t platform_prepare(void) {
static bool_t inited = FALSE;
static uint32_t s_heam_mem[7000];
if (!inited) {
inited = TRUE;
tk_mem_init(s_heam_mem, sizeof(s_heam_mem));
}
return RET_OK;
}
AWTK 集成 RTOS 是非常简单的,以上过程大概花了 2 个小时吧。只要 RTOS 本身好移植,集成 AWTK 和 RTOS 只是分分钟的问题。