-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathdataloader_crowdai.py
59 lines (36 loc) · 1.42 KB
/
dataloader_crowdai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import random
from skimage import io
from skimage.transform import resize
import torch
from torch.utils.data import Dataset
from pycocotools.coco import COCO
class CrowdAI(Dataset):
"""CrowdAI dataset"""
def __init__(self, images_directory, annotations_path):
self.IMAGES_DIRECTORY = images_directory
self.ANNOTATIONS_PATH = annotations_path
self.coco = COCO(self.ANNOTATIONS_PATH)
self.image_ids = self.coco.getImgIds(catIds=self.coco.getCatIds())
self.len = len(self.image_ids)
self.window_size = 320
self.max_points = 256
def loadSample(self, idx):
idx = self.image_ids[idx]
img = self.coco.loadImgs(idx)[0]
image_path = self.IMAGES_DIRECTORY + img['file_name']
image = io.imread(image_path)
image = resize(image, (self.window_size, self.window_size, 3), anti_aliasing=True, preserve_range=True)
annotation_ids = self.coco.getAnnIds(imgIds=img['id'])
annotations = self.coco.loadAnns(annotation_ids)
random.shuffle(annotations)
image_idx = torch.tensor([idx])
image = torch.from_numpy(image)
image = image.permute(2,0,1) / 255.0
sample = {'image': image, 'image_idx': image_idx}
return sample
def __len__(self):
return self.len
def __getitem__(self, idx):
sample = self.loadSample(idx)
return sample