-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwhy_data_analysis_test.py
53 lines (32 loc) · 1.24 KB
/
why_data_analysis_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import json
import os
from utils.normalize_list import normalize_list, standardize_list
import ipdb
pwd = os.getcwd()
with open(os.path.join(pwd, 'response/achievement.json'), 'r') as f:
datas = json.load(f)
# ipdb.set_trace()
gpt_answers = []
a_scores = []
c_scores = []
r_scores = []
avg_scores = []
for data in datas:
gpt_answers.append(data['gpt_eval_result'])
a_scores.append(data['gpt_eval_result']['a_score'])
c_scores.append(data['gpt_eval_result']['c_score'])
r_scores.append(data['gpt_eval_result']['r_score'])
avg_scores.append((a_scores[-1] + c_scores[-1] + r_scores[-1]) / 3.)
# norm_a_scores = normalize_list(standardize_list(a_scores))
# norm_c_scores = normalize_list(standardize_list(c_scores))
# norm_r_scores = normalize_list(standardize_list(r_scores))
# norm_avg_scores = normalize_list(standardize_list(avg_scores))
a_score_rate = (sum(a_scores) / len(a_scores)) / 5.
c_score_rate = (sum(c_scores) / len(c_scores)) / 5.
r_score_rate = (sum(r_scores) / len(r_scores)) / 5.
avg_score_rate = (sum(avg_scores) / len(avg_scores)) / 5.
print('a_score_rate:', a_score_rate)
print('c_score_rate:', c_score_rate)
print('r_score_rate:', r_score_rate)
print('avg_score_rate:', avg_score_rate)
# ipdb.set_trace()